
The τ Model, Formalizing Topic Maps

RobertBarta∗

Bond University

Faculty of Information Technology

Gold Coast, Australia

GernotSalzer†

Technische Universität Wien

Institut für Computersprachen

Vienna, Austria

Abstract

This paper presents a formalization for Topic Maps
(TM). We first simplify TMRM, the current ISO stan-
dard proposal for a TM reference model and then
characterize topic map instances. After defining a
minimal merging operator for maps we propose a for-
mal foundation for a TM query language. This path
expression language allows us to navigate through
given topic maps and to extract information. We also
show how such a language can be the basis for a more
industrial version of a query language and how it may
serve as foundation for a constraint language to define
TM-based ontologies.
Keywords: Knowledge Engineering, Semantic Web,
Topic Maps

1 Introduction

Topic Maps (TM (Pepper 1999)), a knowledge rep-
resentation technology alternative to RDF (O. Las-
sila and K. Swick 1993), have seen some industrial
adoption since 2001. Concurrently, the TM commu-
nity is taking various efforts to define a more fun-
damental, more formal model to capture the essence
of what Topic Maps are (Newcomb, Hunting, Alger-
missen & Durusau 2003, Kipp 2003, Garshol 2004-07-
22, Bogachev n.d.). While the degree of formality and
the extent of TM machinery varies, all models tend
to abstract away from the sets of concepts defined in
(Pepper 2000) and use assertions (and topics) as their
primitives.

After giving an overview over the current state of
affairs, we start with an attempt to conceptually sim-
plify the TMRM (Newcomb et al. 2003) model. From
that, a mathematically more rigorous formalization
of TMs follows in section 4. Based on maps and ele-
mentary map composition we define a path expression
language using a postfix notation. While low-level, it
forms the basis for querying and constraining topic
maps as we point out in section 6. The last section
closes with future research directions.

2 Related Work

Historically, Topic Maps, being a relatively new tech-
nology, had some deficits in rigor in terms of a defining
model. This may be due to the fact that it was more

∗rho@bond.edu.au
†salzer@logic.at

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Second Asia-Pacific Conference on Conceptual
Modelling (APCCM2005), University of Newcastle, Newcastle,
Australia. Conferences in Research and Practice in Information
Technology, Vol. 43. Sven Hartmann and Markus Stumptner,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

endorsed by industrial players than by the academic
community.

Paradoxically, the standardization efforts started
out with the syntax (XTM) with only little, informal
description of the individual constructs. TMDM (for-
merly known as SAM) was supposed to fill this role
by precisely defining how XTM instances are to be
deserialized into a data structure. This is done by
mapping the syntax into an infoset model (compara-
ble to DOM) whereby UML diagrams help to illus-
trate the intended structure as well as the constraints
put on it. While such an approach to model definition
has a certain appeal for (Java) developers, its given
complexity puts it well outside the reach for a more
mathematical formalization.

In parallel a fraction within the TM community ar-
gued that the TM paradigm can be interpreted on a
much more fundamental level if one considers asser-
tions as the basic building blocks, abstracting from
the TAO-level which mainly sees topics with their
names, occurrences and involvements in associations.
This group has developed several generations of the
TMRM (Newcomb et al. 2003), the reference model.
The model therein is mainly based on graph theory
mixed with informal descriptions of constraints which
cover the resolution of subject identity.

Several attempts to suggest an alternative founda-
tional model (Garshol 2004-07-22, Bogachev n.d.) or
to formalize TMRM have been made. (Kipp 2003) is
successfully using a purely set-theoretic approach to
define topic map instances. As all TMRM concepts
have been faithfully included, this resulted in a sig-
nificant set of constraints to be used when reasoning
about map instances.

The contribution of this paper we see threefold:
Firstly, we believe that TMRM can be reasonably
simplified without any loss of generality by the steps
outlined in section 3. This is under the assumption
that all questions of subject identity are handled out-
side the model. Secondly, the assertion model seems
to be general enough to host conceptually not only
TMRM, but also serve as basis for TMDM.

As the TM community now moves to ontology def-
inition languages, retrieval and transformation lan-
guages, we contend that the path language which is
based on the τ model can serve as semantic funda-
ment.

3 Conceptual Simplification

TMRM’s main building blocks are properties which
are attached to topics and assertions which connect
topics in various ways.

3.1 Properties

For properties TMRM distinguishes between subject
identifying properties and other properties. The for-

mer can be stand-alone or a combination of other
properties; they control—for a given application—
under which conditions two topics should be regarded
the same.

With the assumption that all identity inducing
constraints are best covered by a proper ontology lan-
guage, we drop this distinction. Also conferred prop-
erties can be handled much more flexibly with an on-
tology language, which allows us to let conferred and
builtin properties collapse.

We abstract further by regarding properties just
as a special form of binary assertions where the topic
plays a role object and the property forms the other
member of the assertion.

3.2 Assertions

A TMRM assertion stands for a statement between
subjects whereby these subjects play certain roles.
Such an assertion consists of the subject it is about
and a type. Additionally, the players are cast into
their respective roles. To be able to reify the fact
that a certain topic plays a certain role in an asser-
tion, also this substatement is represented by a an-
other topic (casting).

We observe that any type information for an as-
sertion a can be represented by a second, dedicated
assertion b where a plays the instance and that type
plays the role class. A similar consideration applies
to casting topics: again, a second, dedicated asser-
tion can be used where the role, the assertion and the
player are playing appropriate roles.

Scoping—the restriction of an assertion to a cer-
tain context—is clearly a statement about an asser-
tion, so we can represent scoping relations via a fur-
ther assertion, one which connects the original asser-
tion with the scope itself, again via some predefined
roles.

At the end of this process we only have to deal
with assertions containing role-player pairs. Asser-
tions have an identity which allows us to use them in
other assertions. Topics only exist as focal points and
have no explicit property except an identifier.

3.3 Reification

The term reification has a long tradition (Sowa 2000)
in the knowledge representation community. It has
changed its meaning over the years, but it is usu-
ally used to describe how humans form concepts and
then connect them with the ‘real world’. To fully
capture the term formally, we would have to adopt
a philosophical approach, something which we prefer
to avoid for obvious reasons. The question, though,
is whether any formalization of TMs can completely
ignore reification.

Whenever a statement S is about another asser-
tion A then one of two things could be intended by
the author: either (a) S is a statement about the rela-
tionship in the ‘real world’ A is supposed to represent.
As an example consider that A is about an employ-
ment of a person within an organisation and that we
want to qualify in such that “the employment only
started in year 2000”. Alternatively (b), a statement
can be about the assertion within the map itself, such
as “this assertion was commented on by user X”. In
the latter case we treat A as if it were in the ‘real
world’ (inverting somehow the notion of reification
by pulling something abstract from a concept space
and making it ‘real’).

Our—pragmatic—approach is that this distinction
can (and should) be indicated by the proper form of
identifiers. If a topic is supposed to reify a real world
concept, then its identifier should be a URI (a locator

or a name), in case that the ‘real world thing’ has
one. If that thing is a topic in a topic map, then
the author must have a way to address the map as
well as the topic within it. If a direct reification is
not possible, then the topic’s identifier will simply
not be a URI. Indirect identification can be achieved
via subject indicators attached to the topic or more
generally speaking by the context the topic is in.

For assertions we assume that they—as a whole—
implicitly reify the relationship they describe. If an-
other assertion makes a reference to an assertion then
using the assertion’s identifier may thus automatically
cover case (a) above. Like with topics, case (b) can
be handled by using an identifier which addresses the
map and then the assertion within it.

How eventually maps as ‘real world’ objects are
to be addressed is again a matter how identifiers are
formed; but this is outside the scope of our model.

4 Formal Maps

In this section we first prepare the grounds by defining
identifiers, then we build members and assertions and
then finally maps. For presentation, the text here has
two layers, one for the formal part and an informal
one, shaded grey. The latter is to justify design issues
or present examples.

4.1 Identifiers

The set of identifiers, I, contains two sets of ob-
jects: names and literals. Literals may be numbers
or quoted strings. The set of names, N , is an enu-
merable collection of atomic objects. Atomic means
that objects have no other properties than being dis-
tinguishable from each other.

In practical situations names may be strings such as
URIs. They also may be more complex like XLink
or even HyTime pointers. The model only uses the
property that they are distinct from each other.

The reason we chose literals to be numbers or strings
is simply one of convenience. First, these two basic
data types are the most frequently used, and secondly,
both have naturally defined an ordering a ≤ b on
which we can later base sorting.

One issue with selecting a particular set of primitive
data types is that of how to represent others, like com-
posite types as one would need for, say, spatial coor-
dinates. We see two approaches: One way is to model
the content explicitly with assertions themselves. The
other option can be used if the structure of the data
is not specifically relevant to a particular application,
but has to be kept in a map for archiving purposes.
In these situations data can be serialized into a string
and treated as such.

Further we assume that I also contains a small set
of predefined identifiers, id, instance, class, subclass,
superclass. By themselves, they are not special. We
only single them out to be able to define additional
semantics later.

4.2 Members and Assertions

As we are mainly interested in expressing associative
relations, we first define a member to be a pair 〈r, p〉 ∈
(N ×I), with r being the role and p the player of the
member. An assertion a is a finite (possibly empty)
set of members. The set of all assertions is denoted
by A.

Assertions always have an identity. It is a function
id(a) over the set of members of a, whereby we only
request that different member sets result in different
identities. Obviously, assertions are only equal if they
have identical members.

To access the components of an assertion a we
define the set roles(a) = {r1, . . . , rn} with ri being
the roles in the individual members of a, and the set
players(a) = {p1, . . . , pn} with pi being the players
in a.

Note that in assertions players are not grouped
around a role. If several players play one and the same
role, then individual members have to exist for every
such player. Also note, that assertions do not have
a type component; it is up to a further assertion to
establish such a relationship whereby the predefined
identifiers instance and class can be used as roles.

The base model does not impose any restrictions on
players and roles. While not necessary for the for-
malism itself, we might later want to put additional
constraints on the form of assertions to only mean-
ingful combinations. Examples of such meaningful
constraints are “there may be only one player for a
particular role” or “in one and the same assertion a
particular identifier cannot be used as role and as
player”: ∀a ∈ A, roles(a) ∩ players(a) = ∅. An-
other useful constraint could avoid that the identi-
fier for an assertion appears in that assertion itself:
∀a ∈ A, id(a) /∈ (roles(a) ∪ players(a)).

This assertion structure proves to be central to the
whole model. It is sufficiently flat as there is no dis-
tinction between assertions and properties. The fo-
cus on assertions alone also reduces topics to iden-
tifiers. Still, the chosen structure seems to incorpo-
rate enough of the TM paradigm, in that any num-
ber of concepts can be bound together into an asser-
tion and topics—as TMRM mandates—can function
as the sole aggregation point for information.

4.3 Maps

We now consider assertions to be atoms from which
maps can be constructed. A map is a finite (possibly
empty) set of of assertions. The set of all maps is
denoted by M.

To build bigger maps, we define the elementary
composition, denoted by ⊕, of two maps m,m′ ∈ M,
is defined as set union m⊕m′ = m∪m′. We say that
m is a submap of m′ if m ⊆ m′.

Note that we have no special merging operation; only
exactly identical assertions will be identified. In
our setting special-purpose merging, such as TNC
(topic name constraint), is split into two phases: first
maps are combined using elementary composition and
then a second operator is applied to the composite
map. That operator will perform a—more or less
sophisticated—transformation where all the appro-
priate merging is done.

As an example we consider a network which hosts
several servers, organized into clusters (Table 1). At
a particular point in time, servers may be "up" or
"down".
Accordingly, macy, lacy and stacy are the servers,
the first two being in clusterA, the other in
clusterB. While lacy is down, clusterA is still func-
tional, not so clusterB as its only machine is down.

4.4 Primitive Navigation Operators

To navigate through maps and to extract information
out of them, we first need to define basic navigation
operations within a given map.

In our model we can navigate along roles. One
way is to follow a role outwards in a given assertion
a ∈ m. Given additionally a name r we define the
role-out operator a ↘ r = {p | 〈r, p〉 ∈ a}. It returns
all players of a given role in an assertion.

Looking at a00 in the above example, the expression
a00 ↘ class returns the set containing server only.

Another option to navigate is to follow a role in-
wards, seen from an assertion’s point of view. Given
a map m, a name r and an identifier p, we define the
role-in operator p↗mr = {a ∈ m | 〈r, p〉 ∈ a}. We
omit the reference to m if clear from the context.

To find all assertions in which clusterA plays the
role whole, we can write clusterA ↗ whole which
evaluates to {a02, a11}.

The role-in operator does not respect the type of as-
sertions. It simply finds all assertions where a partic-
ular player plays the given role. However, for prac-
tical reasons a refined version of the operator will be
defined in section 4.6.

4.5 Subclassing and Instances

To describe (and query) topic maps, we need to ex-
press relationships between concepts. While the vari-
ety of such relations itself is huge, two special relation-
ships stand out as being fundamental: The subclass-
superclass relationship is used between classes to form
taxonomies (type systems). The instance-class rela-
tionship is established between an object and the class
(or set) the object can be classified into.

Given a map m and names b, c ∈ N , we define the
predicate subclassesm(b, c) to be true if there exists
an a ∈ m such that both conditions, a ↘ subclass =
{b} and a ↘ superclass = {c}, hold. As the usual
interpretation of subclassing is that it is transitive,
we build the transitive closure subclassesm

+ and the
transitive, reflexive closure subclassesm

∗.
Another relationship is instance of, abbreviated as

is − a which holds if there exists a ∈ m such that
a ↘ instance = {b} and a ↘ class = {c}.

Mostly we are interested in an instance-of re-
lationship which includes the transitive version of
subclassing above. is − am

∗(b, c) holds if there ex-
ist a ∈ m such that for some name c′ we have
a ↘ instance = {b}, a ↘ class = {c′} and
subclassesm

∗(c′, c).

According to our cluster map the re-
lations subclassesm(server, machine),
is − am(macy, server) and is − am

∗(macy, machine)
are all true.

The difference between is − am(b, c) and
is − am

∗(b, c) is that the former only reiterates
the information which is already explicit in the map.
When querying a map, though, queries should be
built more robust: If we ask for “all machines” in
a map, then most likely one is also interested in
instances of all (direct and indirect) subclasses of
“machine”.

Table 1: An example map about a computer network

a00 = { < instance, macy >, < class, server > }
a01 = { < instance, a00 >, < class, isInstance > }
a02 = { < part, macy >, < whole, clusterA > }
a03 = { < instance, a02 >, < class, isPartOf > }
a04 = { < object, macy >, < status, "up" > }
a05 = { < instance, a04 >, < class, hasStatus > }
...
a10 = { < instance, lacy >, < class, server > }
a11 = { < part, lacy >, < whole, clusterA > }
a12 = { < object, lacy >, < status, "down" > }
...
a20 = { < instance, stacy >, < class, server > }
a21 = { < part, stacy >, < whole, clusterB > }
a22 = { < object, stacy >, < status, "down" > }

a30 = { < subclass, server >, < superclass, machine > }
a40 = { < instance, clusterA >, < class, cluster > }
a41 = { < instance, clusterB >, < class, cluster > }

4.6 Typed Navigation

We can use the relation is − am
∗(b, c) to specialize

the role-in navigation. Given a map m, names r and
t and an identifier p the typed role-in operator honors
additionally an assertion type:

p↗mr [t] = {a ∈ p↗mr | is − am
∗(id(a), t)} (1)

The obvious difference to the original role-in naviga-
tion is that we now only consider assertions of the
given type to be part of the resulting set.

The expression clusterA↗mwhole[hasStatus] is
supposed to find all assertions of type hasStatus in
which clusterA is the whole. Since there is no such
assertion, the result is empty.

A further way to generalize the navigation is to
allow as role also all subclasses:

a↘mr∗ = {p | ∃〈r′, p〉 ∈ a : subclassesm
∗(r′, r)} (2)

p↗mr∗ = {a ∈ m | ∃〈r′, p〉 ∈ a : subclassesm
∗(r′, r)}

(3)

5 Map Path Language

The topic map path language can be used to extract
information out of given map. The language will
be defined via postfix operators which are applied to
(sets of) assertions (or identifiers).

Before we can formally define the individual post-
fixes and chains of postfixes (path expressions) we
have to characterize the results of applying postfixes
to a set of assertions, such as a map. This is done
with a simple algebra based on tuples.

5.1 Tuple Algebra

Our final result of applying a path expression will be
a bag of tuples. The advantage of tuples are that they
can hold composite results. Every tuple represents
then one possible result, all of them are organized
into a bag. Bags are like sets except that a particular

element may appear any number of times. This is
convenient if we later want to sort or count the tuples.
Otherwise all the usual set operations can be used on
bags.

Assertion tuples are elements from the cartesian
product An with A being the set of assertions. Simi-
larily, identifier tuples are elements from In. We call
n the dimension of the tuple.

When we organize tuples t1, . . . , tn into a bag, then
we denote this as [t1, . . . , tn].

A map m = {a1, . . . , an} can be represented as the
tuple bag [〈a1〉, . . . , 〈an〉]. Conversely, we can also in-
terpret a tuple bag as map when the tuples it contains
are single assertions.

If a bag contains other bags, then the structure
can be flattened out :

[b1, b2, . . . , bn] = [bij | bij ∈ bi ∧ (1 ≤ i ≤ n)] (4)

During application of path expressions also tuples
of bags may be created. Also these can be reduced by
building tuples of all combinations of bag elements:

〈b1, b2, . . . , bn〉 = b1 × b2 × · · · × bn (5)

Finally, if a tuple only contains a single compo-
nent, then it is equivalent to that component:

〈b〉 = b (6)

As we have covered all possible constellations
which can occur when evaluating path expressions,
we can always reduce every result to a bag of tuples.
We call this set BI .

5.2 Postfixes and Path Expressions

Individual postfixes (as detailed below) can be com-
bined to form chains. The set of path expressions PM

is defined as the smallest set satisfying the following
conditions:

1. The projection postfix πi is in PM for any non-
negative integer i.

2. Every identifier from I is in PM.

3. The role-out and role-in postfixes ↘ r and ↗ r
for a name r are in PM.

4. The positive predicate postfix [p = q] and the
negative predicate postfix [p != q] are both in
PM for two path expressions p and q. As special
cases we also include [p] and [!p].

5. For two path expressions p and q also the con-
catenation p · q is in PM. If - from the context
- it is clear that two path expressions are to be
concatenated, we omit the infix.

6. For two path expressions p and q the alternation
p‖q is in PM.

The application of a path expression p to a map
m is denoted by m ⊗ p.

For this process, first we will reinterpret the map as
tuple bag. Then each of the postfixes in p is applied to
it. Each such step results in a new bag which will be
flattened according to the tuple algebra above. The
final bag will be the overall result.

5.2.1 Projection and Identifiers

For both, assertion and identifier tuples, we will use
the projection postfix to extract a particular j:

〈u1, . . . , un〉 ⊗ πj = [〈uj〉] (7)

Projection here plays a similar role like in query lan-
guages like SQL, except that we here use an index for
selection instead of names.

We drop the index 1 in π1 if it is applied to a tuple
with only a single component where then obviously it
holds that 〈u〉⊗π = 〈u〉. Such a projection also serves
as the empty postfix.

In case the path expression is simply an identifier
i ∈ I, then for any u the result is always this identi-
fier:

u ⊗ i = [〈i〉] (8)

5.2.2 Concatenation and Alternation

We define the concatenation · of path expressions p
and q (given any u) as

u ⊗ (p · q) = (u ⊗ p) ⊗ q (9)

The syntactic structure of path expressions ensures
that u is always a structure for which such an evalu-
ation is defined.

The alternation of two path expressions p and q
is defined as the union of the result tuple bags of the
individual evaluations:

u ⊗ (p‖q) = u ⊗ p ∪ u ⊗ q (10)

5.2.3 Navigation Postfix

Next we define how role-out and role-in navigation
postfixes can be applied to an assertion tuple. We
simply apply the navigation to every assertion in the
tuple:

〈a1, . . . , an〉⊗ ↘ r = 〈a1 ↘ r∗, . . . , an ↘ r∗〉 (11)

〈p1, . . . , pn〉⊗ ↗ r = 〈p1 ↗ r∗, . . . , pn ↗ r∗〉 (12)

Note that we have used the typed navigation from
section 4.6. While not absolutely necessary, it helps
to keep path expressions more concise. Note also,
that the individual elements of the resulting tuples
are bags. Again, the transformation rules of the tuple
algebra have to be used to reduce this into a bag of
tuples.

5.2.4 Filtering Postfixes

From tuple bags we can filter out specific tuples using
predicates. Given a tuple bag B = [t1, . . . , tk] and
two path expressions p and q, applying the positive
predicate postfix [p = q] to B is defined as

B ⊗ [p = q] = [t ∈ B | t ⊗ p ∩ t ⊗ q 6= ∅] (13)

If p and q are identical, then we can abbreviate
[p = p] with [p].

The result of the positive predicate prefix is that sub-
bag of B for which elements the evaluation of p and
q gives at least one common result.

Note that this implements an exists semantics as
B⊗ [p = p] is reducable to [t ∈ B | t ⊗ p 6= ∅]. Only
those tuples of B will be part of the result tuple bag
if there exists at least one result when p is applied to
that tuple.

By introducing negation in predicate postfixes, we
can also implement forall semantics. Given a tuple
bag B and two path expressions p and q, we define
the negative predicate postfix as

B ⊗ [p != q] = [t ∈ B | t ⊗ p ∩ t ⊗ q = ∅] (14)

If p and q are identical, then we can abbreviate
[p != p] with [! p]. In this case the result tuple
bag becomes [t ∈ B | t ⊗ p = ∅].

A particular tuple will only then be part of the result
tuple bag if p applied to it will not render a single
value, i.e. all evaluations will return no result.

Implicit in the formalism are the logic conjunction
and disjunction of predicate postfixes. Obviously, a
logical and is provided by concatenating two pred-
icate postfixes ([..] · [..]) as the result of the first
postfix will be further tested for the second predicate.
The logical or between predicate postfixes is implic-
itly given by alternating them ([..]‖[..]).

5.3 Evaluation Example

Let us assume that we are looking for the status of
the servers in clusterA: [π ↘ class = isPartOf] ↘
instance[π ↘ whole = clusterA] ↘ part ↗
object < π ↘ object, π ↘ status >

The first predicate selects out all those assertions in
the map which have a class role where one of the
players happens to be isPartOf. If we are then look-
ing at these assertions and the player(s) of the role
instance, then we have effectively selected the asser-
tions of type isPartOf from the map.

We consider each of these assertions (in our case these
are a02, a11 and a21) and filter out those of them
which have a whole role where one player is clusterA.
When we continue with a02 and a11, and then fol-
low the part, this leads to a bag containing only the
names macy and lacy.

In the next step we investigate where these names
are players of the role object, so we find a bag with
assertions a04 and a12. Here our path splits into two
components: the first one navigates to the name of
that object, the other to its status. The result is
then [〈macy, ”up”〉, 〈lacy, ”down”〉].

In second example we look at all clusters which are
down, i.e. where all machines in that cluster are
down. As result we get [〈clusterB〉]: [π ↘ class =
cluster] ↘ instance[π ↗ whole ↘ part ↗
object ↘ status! = ”up”]

6 Querying, Filtering and Constraining of
Maps

Maps and path expressions, as presented here, can
serve as a basis for more high-level concepts, as they
are needed for ontology and knowledge engineering
(Fensel, Hendler, Lieberman & Wahlster 2003). The
use of path expressions to extract information out of
maps leads to the following observations:

Obviously, PM is a (primitive) language to query
topic maps. Note, though, that PM lacks all facil-
ities to newly create content, such as XML or TM
content as described in (Garshol & Barta 2003). A
more industrial topic map query language (TMQL)
will have to offer content generation language con-
structs. While it will also provide more concise syn-
tax due to high-level concepts, PM can (and probably
will) act as a semantic foundation.

More formally, we can identify a subset of PM,
the filters FM, which contains all those queries which
return maps:

FM = {q ∈ PM | ∀m ∈ M,m⊗q = [〈a1〉 . . . 〈an〉 | ai ∈ m]}
(15)

Clearly, the filtered maps are always submaps of
the queried map: m ⊗ f ⊆ m, for f ∈ FM.

Interestingly, PM can also be regarded as primi-
tive constraint language: only when the application
of a path expression c to a map m renders any result,
then the map conforms to the expectations we have
set up in c.

If, for instance, we had set up a query which asks
for all weapons of mass destruction in our running
example, then the result would have been the empty
bag. Only if the query follows the structure and the
vocabulary of the map, then there will be a non-empty
result. Equivalently, this is also true the other way
round.

Consequently, we can define a satisfaction relation
|=⊆ PM×M between a path expression c and a map
m, such that

c |= m ⇐⇒ m ⊗ c 6= ∅ (16)

Based on this, logical connectives between con-
straints can be defined.

7 Future Work

While we concentrate in this work on formalizing the
structure of topic maps (at least our understanding
thereof) and of an expression language to extract in-
formation from them, we have not yet studied any
properties of PM. Specifically, we are interested how
path expressions relate to formulas in description log-
ics (Baader, Calvanese, McGuinness, Nardi & Patel-
Schneider 2003, Description Logics Home Page n.d.),
especially in the light that both can be used to model

an ontology. A related question is how a path lan-
guage can be used to express identity (apart from the
explicit identity given by the topic’s identifier).

Finally, in a larger picture, we are interested
in connecting maps, constraints, queries and even
maybe updates for topic maps in an algebra. When
connecting maps, merging as defined by the XTM
standard is an issue.

References

Baader, F., Calvanese, D., McGuinness, D., Nardi, D.
& Patel-Schneider, P., eds (2003), The Descrip-
tion Logic Handbook.
URL: http:// books.cambridge.org/ 0521781760.
htm

Bogachev, D. (n.d.), ‘TMAssert’.
URL: http:// homepage.mac.com/dmitryv/
TopicMaps/TMRM/TMAssert.pdf

Description Logics Home Page (n.d.).
URL: http:// dl.kr.org/

Fensel, D., Hendler, J. A., Lieberman, H. & Wahlster,
W., eds (2003), Spinning the Semantic Web, The
MIT Press.
URL: http://mitpress.mit.edu/ catalog/ item/
default.asp? tid=9182

Garshol, L. M. (2004-07-22), ‘A proposed founda-
tional model for Topic Maps’.
URL: http://www.jtc1sc34.org/ repository/
0529.htm

Garshol, L. M. & Barta, R. (2003), ‘JTC1/SC34:
TMQL requirements’.
URL: http://www.isotopicmaps.org/ tmql/
tmqlreqs.html

Kipp, N. A. (2003), ‘A mathematical formal-
ism for the Topic Maps reference model’.
http://www.isotopicmaps.org/tmrm/0441.htm.
URL: http://www.isotopicmaps.org/ tmrm/
0441.htm

Newcomb, S. R., Hunting, S., Algermissen, J. & Du-
rusau, P. (2003), ‘ISO/IEC JTC1/SC34, Topic
Maps - reference model, editor’s draft, revision
3.10’.
URL: http://www.isotopicmaps.org/ tmrm/

O. Lassila and K. Swick (1993), Resource Description
Framework (RDF) model and syntax specifica-
tion, Technical report, W3C, Camo AS.
URL: http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222.html

Pepper, S. (1999), ‘Navigating haystacks, discovering
needles’, Markup Languages: Theory and Prac-
tice, Vol. 1 No. 4 .

Pepper, S. (2000), ‘The TAO of Topic Maps’.
URL: http://www.gca.org/ papers/
xmleurope2000/ papers/ s11-01.html

Sowa, J. (2000), Knowledge Representation: Logical,
Philosophical and Computational Foundations,
Brooks-Cole, Pacific Grove.

