
 1

Uppsala Master’s Thesis in

Computer Science 309
2007-03-22

ISSN 1100-1836

Wrapping Topic Maps in an Object-Relational

Database System

Qin Zhang

Information Technology

Computer Science Department

Uppsala University

Box 337

S-751 05 Uppsala

Sweden

Supervisor: Silvia Stefanova

Examiner: Tore Risch

 2

Abstract

The purpose of this thesis project is to develop an XTM (XML Topic Maps) wrapper, called

XTMWrapper, for the functional and object-oriented DBMS Amos II so that XTM files can be

accessed through Amos II using its query language, AmosQL. The wrapper can be used as a

database loader for XTM files. The wrapper parses XTM files, translates them into an Amos

II data representation, and populates the Amos II database. To represent imported Topic Map

data in Amos II, a schema for Topic Maps is developed in terms of its functional data model.

The schema represents any Topic Map independent of what the Topic Map describes. The

wrapper is written in Java and utilizes a publicly available Topic Map engine, TM4J (Topic

Map for Java).

 3

Table of Contents

1 Introcuction

2 Background

 2.1 Databases

 2.2 Amos II

 2.2.1 Mediators

 2.2.2 Wrappers

 2.2.3 Data Model

 2.2.4 AmosQL Queries

 2.2.5 Foreign Functions in Java

 2.3 Topic Maps

 2.3.1 Concepts

 2.3.2 Data Model

3 Architecture

 3.1 Architecture

 3.2 Interaction with XTMWrapper

4 Implementation

 4.1 Schema Translation

 4.2 Database Population

 4.2.1 Controller class

 4.2.2 Builder class

 4.2.3 XTMParser class

 4.2.4 TopicMapWalker class

 4.2.5 Handler class

 4.2.6 Sequence and Collaboration

 4.3 Discussion of Problems

5 Conclusion and Future Work

 4

1 Introduction
Internet makes it easy to access a lot of information. Facing the flood of information

accumulated for years people find it more and more difficult to avoid being lost

among the vast of information and find the information they need.

In 1999, a new meta-data description representation, called Topic Maps [1], was

proposed in order to make the search for information easier. It structurally abstracts

information and links relevant information together to enable integration and reuse of

information. The Topic Map data model is used to describe how data in Topic Maps is

represented and used [2]. The main building elements of Topic Maps are: topic,

association, and occurrence, which together form the structure of its data model.

Using the data model, people can search among topics to find desired external

information described by the Topic Map.

There are several syntaxes for Topic Maps where XTM (XML Topic Map) [3] is a

popular one. It imposes XML syntax on Topic Maps web documents. Another popular

syntax is LTM (Linear Topic Map) [4]. The present project works only with Topic

Maps stored as XTM files. Therefore, it will not work with other Topic Map file

formats like LTM [4].

The TM4J project [5] provides a Topic Map processing engine TM4J for creating and

manipulating XTM documents. This thesis project develops an XTM data loader

based on TM4J.

TMAPI [6] is a commonly used application interface for Topic Maps to access and

manipulate data in Topic Maps. TM4J provides interfaces conforming to TMAPI 1.0

alpha release [7] for the development of Topic Map based applications.

Amos II (Active Mediators Object System [8] [9]) is a distributed mediator database

system. Its core is a light-weight extensible database management system. Using its

functional data model and relationally complete object-oriented querying language

 5

(AmosQL), it allows query and integration among heterogeneous data sources. The

integration of data is implemented by the mediator-wrapper approach [8]. Wrappers

are responsible for accessing external data sources, while mediators combine the

views of wrapped data. Wrappers can be developed by using the interfaces between

Amos II and programming languages, such as C, Java and LISP [10]. Wrappers have

been implemented for, e.g, Internet Search Engine, CAD Systems XML, and RDF

[11].

The task of this Thesis project is to develop a wrapper, called XTMWrapper, for Topic

Maps stored as XTM files. The wrapper can also be used as a database loader for XTM

files. By means of XTMWrapper the content of XTM files can be loaded into an Amos

II database and accessed by AmosQL. The main body of the wrapper is based on a

foreign function in Java. It consists of a front-end and a back-end, exploiting the result

of the parser and populating the Amos II database accordingly. A translation between

the Topic Maps data model and the Amos II data model was made as a generic

schema for Topic Maps in terms of the data model of Amos II. Thus in this project

Amos II is used as a repository for Topic Maps and it enables general queries over

Topic Maps using AmosQL. In addition, some help functions and procedures are

designed for easier navigation in the Topic Map information stored in the database.

This report consists of four chapters. The first chapter offers an overview of

background knowledge concerning databases, Amos II, and Topic Maps. It is

followed by the general architecture of the developed system, which gives a high-

level view of how the system works. Then the implementation of the wrapper is

explained in details. At the end, the report is summarized with conclusions (from the

past) and (a preview to the) some future work ideas.

 6

2 Background
This chapter gives an overview for the related technologies helpful to make this

project, including database systems, Topic Maps, and Amos II.

2.1 Databases

“Database” is a popular word today that participates in all life aspects, providing

assistance in various services, such as banking, retails, and education.

In a narrow sense, a database (DB) is just a large collection of structured shared data

stored on disk for long time, which can be accessed and processed by a set of software

tools.

Database Management Systems (DBMS) are data management programs, operating

between users and databases. Databases are uniformly managed and controlled by

DBMS when they are created, employed, and maintained. Through DBMS, users can

easily define, manipulate and recover data, ensure concurrent data access, and provide

integrity and security.

DBMS and database applications use database languages to communicate with the

database. The most common database language is SQL.

A database schema is a structural description of the objects and their relationships in

the database [12]. It is created when a database is defined but can be modified as the

database evolves.

There are a variety of Data Models, which are languages for describing database

schemas on the logical level. The most common ones is the relational model where all

data is represented as tables.

Object-relational databases are a combination of relational databases and object-

oriented databases. They allow developers to integrate the databases with customized

data types, index structures, and query optimizers.

 7

Fig. 1 illustrated system structure of DBMSs. Applications and users interact with the

DBMS using the query language SQL or some other query language.

Figure 1: The architecture of a DBMS

2.2 Amos II

Amos II is a distributed mediator database system with a functional data model and a

relationally complete functional query language named AmosQL [8]. The core of the

system is a light-weight extensible database management system, performing queries

and integration on heterogeneous data sources. Amos II employs the mediator-

wrapper approach to integrate external data. The wrappers are system extensions to

SQL statements

DBMS

Applications

Users / Administrators

Database

Query processing

Storage management

Database
Schema

SQL statements

 8

query and access external data sources, while the mediators combine the views of

wrapped data.

2.2.1 Wrappers

Amos II wrappers are pieces of programs knowing how to process queries to external

data sources and translate the external data to the local data model that Amos II uses.

It interfaces the Amos II kernel and the external data sources, providing a way to

transparently access the external data sources. There are already wrappers for Internet

Search Engine, CAD Systems, XML, RDF, etc. [11].

A wrapper interfaces a particular kind of external data sources by calling particular

API or query languages recognizable by the sources. It should contain the knowledge

about the schema and meta-data about the source data, as well as a translation rule

mapping from the external data model to the Amos II data model. In this project, the

XTM files are accessed through a wrapper implemented by the software TM4J [5] to

parse XTM files. The imported data is translated into Topic Map data representation

in a generic Topic Map Amos II schema that can store any Topic Map.

Foreign functions (sec. 2.2.5) are external functions implemented in some regular

programming language, e.g. C, Java, LISP, etc.. They are the basis of wrapping

external data sources from Amos II and provide the low level interfaces to external

data sources, hence the main part of wrappers. Java programs call Amos II through

the callin interface and foreign functions can be defined in Java through the callout

interface. The present system provides a Java foreign function “loadXTM”, which is

defined through the Amos II callout interface for Java and calls Amos II functions to

populate the database with XTM data through the callin interface.

2.2.2 Data Model

Amos II has a functional data model, whose primary elements are: objects, types and

functions.

 9

Objects model all entities in the database, including user-defined objects and Amos II

system objects. There are two primary kinds of objects: surrogates and literals.

Surrogate objects are user or system defined objects with corresponding object

identifiers (OIDs). Literal objects are build-in objects which are maintained by the

system without an explicit OID, such as integers and strings. When defining the

generic schema for Topic Maps in Amos II, all the Topic Map items are treated as

objects populating the same generic Topic Map schema.

Every object is instances of one or several types, including meta-objects representing

the types themselves. Types are organized in a hierarchy of super-types and sub-types.

This means that every object can belong to a set of types, among which there is one

most specific type assigned to the object when it’s defined. TopicMap, Topic,

Occurrence and Association are some types in the generic schema for Topic Maps in

Amos II.

Functions can be used to model object properties, operations over objects and

relationships between objects. A function consists of two parts: the signature and the

implementation [8]. The signature defines the function name along with the types and

names of the argument(s) and the result. The implementation indicates how to

perform the necessary operation given the argument(s). Having the same name,

overloaded functions can be defined differently depending on their implementation.

Different resolvents of overloaded functions are differentiated by their argument types.

Depending on their implementation, functions can be classified into stored, derived

and foreign functions [8].

 Stored functions represent properties of objects which are stored locally in an

Amos II database. Attributes of Topic Map items are modeled as stored functions

when translating from Topic Maps into Amos II.

 Derived functions are functions defined in terms of queries over other Amos II

functions. Some derived functions are defined to help the users search and

navigate the information of the loaded XTM file.

 Foreign functions are functions implemented in external programming languages

such as C, Lisp and Java. The main part of XTMWrapper is a foreign function

loadXTM in Java which loads XTM files into the database.

 10

2.2.3 AmosQL Queries

Queries in AmosQL have the format of select statements:

 select <result>

 from <type extents>

 where <condition>

In general the semantics of an AmosQL query is as follows [8]:

1. Form the Cartesian product of the type extents.

2. Restrict the Cartesian product by the condition.

3. For each possible variable binding to tuple elements in the restricted

Cartesian product, evaluate the result expressions to form a result tuple.

4. Result tuples containing NIL are not included in the result set.

To avoid the inefficiency execution of queries, it’s necessary to perform query

optimization first to transform the queries into an efficient execution strategy.

2.2.4 Foreign Functions in Java
In order to create a foreign function in Java, the following three steps should be

followed [10]:

1. Define Java code to implement the function.

2. Define the foreign function signature in AmosQL.

3. Specify optional cost hints to estimate the cost to executing the function.

2.3 Topic Maps

“Topic Maps is a technology for encoding knowledge and connecting this encoded

knowledge to relevant information resources [2].”

A Topic Map acts as a meta-data description (i.e. a schema) for one or more

information resource(s). It represents the concepts from the resource(s) and connects

 11

them to other relevant concepts inside or outside the resource(s). Therefore, with a

Topic Map, people can see a big picture about how concepts are linked to each other,

“and focusing on the forest rather than the trees.” [13] This can be illustrated by the

following figure 3:

Figure 3: The Topic Map (the cloud at the top) describes meta-data about the

information in the documents (the small rectangles) and databases (the small "cans")

by linking into them using URIs (the lines) [13]

For interchanging Topic Maps through the internet, XML Topic Maps (XTM) 1.0 [1]

is published as a format to represent them using an XML based syntax by

TopicMaps.Org. It is revised by ISO to become XTM 2.0 [14]. Since the TM4J is

based on XTM 1.0, the XTMWrapper system only deals with XTM 1.0 DTD and

specification.

The TM4J project [5] provides a Topic Map processing engine TM4J for creating,

parsing, and manipulating XTM documents. This project utilizes it for parsing XTM

syntax and building a Topic Map representation in Amos II.

 12

2.3.1 Topic Map Data Model

A traditional index entry, e.g. “Le Fabuleux destin d'Amélie Poulain, page 7, See also

actress Audrey Tautou”, has three important elements: Topic “Le Fabuleux destin

d'Amélie Poulain”, occurrence “page 7” and association “actress Audrey Tautou”.

Similarly, Topic Maps borrow the basic features from bibliographic indices: topics,

associations and occurrences, to represent knowledge structure that exists in the

information sources.

Figure 4: Key Concepts for Topic Maps: topic, association and occurrence [16]

Topics are “symbol(s) used within a Topic Map to represent one, and only one,

subject, in order to allow statement to be made about the subject [2].” A topic models

the concepts about a subject from the resource(s) on which the Topic Map is applied.

In a Topic Map topics are instances of zero or more topic types, which correspond to

the use of multiple indices in a book for instance [15]. These topic types are also

modeled as topics. Topics may or may not have explicit names. For those with

explicit names, they have s.c. base names as standardized names, and at the same time

there can be provided several variants of each base name as aliases. Having multiple

names for a topic facilitates calling it in different contexts (scopes), such as referring

the same object in different languages. Topics also can have occurrences and play

Topic

Topic

Topic
Topic

Association
Occurrence

 13

roles in associations that will be discussed later.

Sometimes, it’s necessary to know which subject a topic models (or reifies),

especially when merging Topic Maps. Topics about the same subject should be

combined so that the subject can be accessed through one topic. The relationship

between topics and subjects can be presented by subject identity. It is the URI of the

subject if it can be addressed in the web; otherwise it should be the reference to its

subject indicator that is an information resource “to unambiguously identify the

subject [2]”. Topics sharing the same subject indicator will be merged into a single

topic having the combination of properties from all the merged topics.

Occurrences assign relevant information resources to topics. For example, an

occurrence can be a picture illustrating the topic, an academic paper studying it, or

just some words explaining it. Therefore, the occurrences can be seen as “illustration”,

“study” and “explanation” of the topics themselves. In XTM, Occurrences are

indicated by using URIs. They can also be scoped, which is explained later on.

Associations link together two or more topics, which have some kind of mutual

relationships Just like topics and occurrences, an association can also be an instance

of zero or more topic types. They are topics themselves. Thus topic types are special

cases of association types. Associations make it possible to present all topics having

the same relationship, (e.g.) ignoring the specific of each topic and concentrate on the

relationship instead. This feature gives a great power to “intuitive” navigation among

large data sets [15]. Every topic participating in an association is a member of that

association and plays a role in it. The role is presented by a topic defining how the

member topic acts in that association. In addition, associations contain information

about the member topics, so they’re multidirectional. This means users need only to

know one of the member topics in order to navigate to all other members.

Associations can also be assigned different scopes.

It was mentioned above that names of topics, occurrences, and associations need to be

assigned in certain context, i.e. their scope. People need context to understand things,

for example, a word can have different meanings in different context. So does the

computer. The scopes offer the contexts and help the computers to process the Topic

 14

Maps without ambiguities. Moreover, scopes can also aid navigation [15].

Topic Maps build up multi-directional navigation paths crossing the immense topic

space and covering several knowledge fields. With the Topic Map data model

knowledge and information can be integrated, structured and managed; and

navigation among the ocean of information will become easier.

 15

3 Architecture
This chapter presents an overview of the developed XTMWrapper system. It starts

with a high level view of the architecture and then gives examples of how users

interact with the system.

3.1 Architecture

The following picture shows the abstract architecture of XTMWrapper.

Figure 5: High level architecture of XTMWrapper

A short description of the blocks of the architecture is given as follows.

 Wrapper Dispatcher receives commands and arguments, by the users, through

AmosQL

Applications / Users

TM-Amos Back End

TM4J Front End

XTM Files

Amos Java Interfaces

XTMWrapper

Wrapper Dispatcher

TMAPI

Java Function Calls

Generic Topic
Map Schema

Amos II Database

Amos II Kernel

 16

Amos II and dispatches the work to the XTMWrapper.

 TM4J Front End contains two classes XTMParser and XTMBuilder.

 XTMParser reads the XTM files, parses the syntax and forwards the tokens

and data to XTMBuilder.

 XTMBuilder checks the XTM syntax, collects all the tokens and builds up a

Topic Map main memory data structure in Java.

 TM-Amos Back End consists of two classes, which are TopicMapWalker and

XTMWrapHandler.

 TopicMapWalker traverses the Topic Map main memory data representation

and calls XTMWrapHandler to handle the specific events according to the

ongoing tokens.

 XTMWrapHandler deals with the translation between Topic Map objects and

Amos II objects, and then populates the Amos II database.

TMWapper and Amos II are connected through the callin and callout interfaces for

Java [10]. Amos II calls a foreign function, loadXTM, to load the XTM files into the

Amos II database through the callout interface. This foreign function in its turn calls

other Amos II functions to populate the database through the callin interface.

Users send requests to Amos II by giving the URLs of XTM files they want to query

as the argument to the foreign function loadXTM. Then Amos II transparently

accesses the desired XTM files, store their information in the database and responses

to the users’ queries.

3.2 Interaction with the XTMWrapper

The main overloaded function to load XTM files into the database is:

loadXTM (Charstring file, Charstring baseURL) ---- loadXTM1

loadXTM (Charstring file) ---- loadXTM2

 17

loadXTM1 takes two arguments both of type Charstring. The first argument file

indicates where to find the XTM file the user wants to query. It can either be a local

file address or a remote URL on the Internet. The second argument baseURL sets the

URL property of topics for that Topic Map.

loadXTM2 is a derived function. After receiving the file address from the users, it calls

loadXTM1 and passes it together with an empty string (as the baseURL) to loadXTM1.

In this case, the baseURL of the topics will be the same as file, i.e. the name of the

XTM file.

In order to facilitate easier queries, the following derived functions and database

procedures are defined as help functions and procedures. By calling them, users can

navigate into the details of the requested XTM file.

 getTopicID retrieves the id attributes for all topics or topics belonging to certain

Topic Map:

getTopicIDs ()->Bag of Charstring

getTopicIDs (TopicMap)->Bag of Charstring

Usage Example:

/*Load an xtm file from local disk given the baseURL.*/

> loadXTM(“jill.xtm”, “http://martinpc.it.uu.se/jill.xtm”);

“Start loading jill.xtm”

“XTM Loaded.”

/*Load an xtm file from the Internet without specifying the baseURL.*/

> loadXTM(“http://www.isotopicmaps.org/tmql/tmql-resources.xtm”);

“Start loading http://www.isotopicmaps.org/tmql/tmql-resources.xtm”

“XTM Loaded.”

 18

 getTopic retrieves a topic object, given its id attribute:

getTopic (Charstring)->TM_topic

 The following functions retrieve the baseNameString1 for the specific topic or the

baseName object, respectively, by matching its baseNameString property:

getTopicName (TM_topic)->Charstring

getTopicName (Charstring)->TM_baseName

1 A baseName is the base form of a topic name. It provides a string baseNameString to label a topic [3].

Usage Example:

> getTopic (“tmql”);

[OID 1151]

[OID 1251]

Note: Theoretically, Topic IDs are unique in one Topic Map. But in practice, external

references can have the same “id” as topics. So this query returns two result

records with the same ID.

Usage Example:

> getTopicIDs ();

"jillstm-topic"

"short-name"

"developer"

"company"

"description"

……

> getTopicIDs (:tm1);

"jillstm-topic"

"short-name"

"developer"

"company"

"description"

……

 19

 The following functions retrieve the id of a topic referenced by the instanceOf

property of a topic, an occurrence, or an association:

getType (TM_topic)->Charstring

getType (TM_occurrence)->Charstring

getType(TM_association)->Charstring

 The function getScope retieves the id of the topic referenced by the scope

property of a topic, an occurrence, or an association:

getScope(TM_baseName)->Charstring

getScope(TM_occurrence)->Charstring

getScope(TM_association)->Charstring

 The following functions help users navigate in a Topic Map database. (Usage

examples and results will be given later.)

showTopic(TM_topic)-> Bag of Charstring

showName(TM_topic)->Charstring

Usage Example:

> getScope (getTopicName (“TMQL”));

“acronym”

Usage Example:

> getType (getTopic (“tmql”));

“query language”

Usage Example:

> getTopicName (getTopic (“tmql”));

”TMQL”

”Topic Map Query Language”

getTopicName (“Topic Map Query Language”);

[OID 1152]

 20

showOccurrence(TM_topic)->Charstring

showAssociationAbout(TM_topic)->Charstring

The following example uses part of an XTM file to show the navigation in a Topic

Map. This part of the Topic Map talks about the film “Le Fabuleux destin d'Amelie

Poulain” and its actress “Audrey Tautou”.

 21

Suppose a user interested in this film doesn’t know the name of the actress and wants

to know more about the actress. She could use XTMWrapper to perform the following

navigation.

<topic id="amelie">
 <instanceOf>
 <topicRef xlink:href="#film"/>
 </instanceOf>
 <baseName>
 <baseNameString> Le Fabuleux destin d'Amelie Poulain </baseNameString>
 </baseName>
 <occurrence>
 <instanceOf>
 <topicRef xlink:href="#official_site"/>
 </instanceOf>
 <resourceRef xlink:href="http://www.amelie-lefilm.com/"/>
 </occurrence>
</topic>

<topic id="a_tautou">
 <instanceOf>
 <topicRef xlink:href="#person"/>
 </instanceOf>
 <baseName>
 <baseNameString> Audrey Tautou </baseNameString>

</baseName>
<occurrence>
 <instanceOf>

<topicRef xlink:href="#official_site"/>
 </instanceOf>
 <resourceRef xlink:href="http://audrey-tautou.org/"/>

 </occurrence>
</topic>

<association>
 <instanceOf>
 <topicRef xlink:href="#role"/>
 </instanceOf>
 <member>
 <roleSpec>
 <topicRef xlink:href="#actress"/>
 </roleSpec>
 <topicRef xlink:href="#a_tautou"/>
 </member>
 <member>
 <roleSpec>
 <topicRef xlink:href="#film"/>
 </roleSpec>
 <topicRef xlink:href="#amelie"/>
 </member>
</association>

 22

1. Get the topic about the film

2. Get the association about the film

Query with help functions and procedures:

> loadXTM (”Amelie.xtm”);

> select t into :film

 from TM_topic t

 where getTopicName (t) = “Le Fabuleux destin d'Amelie Poulain”;

> showTopic (:film);

Result:

”ID: amelie”

“URL: C:\Amelie.xtm”

“Type: film”

“Name: Le Fabuleux destin d'Amelie Poulain”

“occurrence”

“ http://www.amelie_lefilm.com/”

“ Type: official_site”

Query with “select” and “where”:

> select t from TM_topic t;

> select t from TM_topic t where id(instanceOf(t)) = ”film”;

”amelie”

> select t into :film from TM_topic t where id(t) = “amelie”;

 23

3. Get the topic about the actress

Query with help functions and procedures:

> showAssociationAbout (:film);

Result:

”Association”

“ Type: direct”

“ Member: amelie”

“ Role: film”

“ Member: j_p_jeunet”

“ Role: director”

”Association”

“ Type: role”

“ Member: amelie”

“ Role: film”

“ Member: a_tautou”

“ Role: actress”

Query with “select” and “where”:

> select a into :role

from TM_association a

where id(player(member(a))) = “amelie”

and id(instanceOf(a)) = “role”;

> select id(t)

 from TM_topic t

 where t = player(member(:role))

 and id(roleSpec(member(:role))) = “actress”;

“a_tautou”

 24

With the help of loadXTM and the help functions, users can access and search XTM

files through Amos II.

Query with help functions and procedures:

> showTopic (getTopic(“a_tautou”));

Query with “select” and “where”:

> showTopic (select t from TM_topic t where id(t) = ”a_tautou”);

Result:

”ID: a_tautou”

“URL: C:\Amelie.xtm”

“Type: person”

“Name: Audrey Tautou”

“occurrence”

“ http://audrey-tautou.org/”

 25

4 Implementation

This chapter describes in details the implementation of the wrapper system in two

parts:

 Creating a generic schema in Amos II for the XTM data model.

 Populating the Amos II database with XTM data.

Pictures and examples are presented in order to explain how the schema translation is

done and how the software modules collaborate. At the end there is a discussion about

the problems regarding the current implementation.

4.1 Functional Topic Map Schema

In order to load XTM files into an Amos II database, a generic Topic Map schema

that represents any Topic Map is defined in Amos II. The following pictures depict

how the translation from schema for XTM [3] is done. The relationships are specified

by the signatures of the functions corresponding to Topic Map primitives.

Notation Explanation:

Figure 6: Notation Explantion

Entity (type in Amos II)

N 1
Relationship (function in Amos II)

Attribute (function in Amos II)

Direction of function

Cardinality

Inheritance

 26

Figure 7: Topic Map schema

Schema:

<! ELEMENT topicMap (topic | association | mergeMap2) * >

Function signatures:

topic(TopicMap) -> Bag of TM_topic

mergeMap(TopicMap) -> Bag of TM_topic

association(TopicMap) -> Bag of TM_association

Figure 8: Topic

Schema:

2 A mergeMap references an external Topic Map by a URI. It is a directive to merge the containing Topic Map and
the referenced Topic Map [3].

0...N

1...N 1...N 1...N

0...N 0...N

TopicMap

TM_topic TM_association

topic mergeMap association

0...N 0...N

1 1

1...N

0...N

1...N

0...N
TM_topic

TM_basename TM_occurrence

urlid

instanceOf Subject
Identity

baseName occurrence

 27

<! ELEMENT topic (instanceOf *, subjectIdentity ?, (baseName | occurrence) *) >

Function signatures:

id(TM_topic) -> Charstring

URL(TM_topic) -> Charstring

instanceOf(TM_topic nonkey) -> TM_topic

subjectIdentity(TM_topic nonkey) -> TM_topic

baseName(TM_topic) -> Bag of TM_baseName

occurrence(TM_topic) -> Bag of TM_occurrence

Figure 9: BaseName

Schema:

<! ELEMENT baseName (scope ?, baseNameString, variant *) >

Function signatures:

id(TM_baseName) -> Charstring

baseNameString(TM_baseName) -> Charstring

scope(TM_baseName) -> Bag of TM_topic

variant(TM_baseName) -> Bag of TM_variant key

0...N 0...N

1 1...N

TM_topic

TM_basename id
baseName

String

TM_variant

scope variant

 28

Figure 10: Variant

Schema:

<! ELEMENT variant (parameters, variantName ?, variant *) >

Function signatures:

variant(TM_variant) -> Bag of TM_variant

variantName(TM_variant) -> Bag of TM_topic

parameters(TM_variant) -> Bag of TM_topic

data(TM_variant) -> <Charstring,Charstring>

Figure 11: Occurrence

1
1...N 1...N

1...N 0...1

0...N

TM_topic

TM_variant variant

variantName

data

parameters

datais-a

0...1

1...N 1...N

1 0...N

1...N

TM_topic

TM_occurrence

scope reference instanceOf

TM_topic

 29

Schema:

<! ELEMENT occurrence (instanceOf ?, scope ?, (resourceRef | resourceData)) >

Function signatures:

instanceOf(TM_occurrence) -> TM_topic

scope(TM_occurrence nonkey) -> TM_topic

data(TM_occurrence) -> Charstring

reference(TM_occurrence) -> TM_topic

Figure 12: Association & Member

Schema:

<! ELEMENT association (instanceOf ?, scope ?, member +) >

<! ELEMENT member (roleSpec ?, (topicRef | resourceRef | subjectIndicatorRef)

*) >

1...N

1...N 0...1

0...N

0...1

1...N 1...N

1...N 0...N

1...N

TM_topic

TM_association

id

scope member instanceOf

TM_member

roleSpec

player

 30

Function signatures:

id(TM_association key) -> Charstring

instanceOf(TM_association) -> TM_topic

scope(TM_association nonkey) -> TM_topic

member(TM_association) -> Bag of TM_member

roleSpec(TM_member key) -> TM_topic

player(TM_member nonkey) -> TM_topic

Notice that this is a generic schema for Topic Maps. It can represent any Topic Map

independent of what the Topic Map describes.

4.2 Database Population

The XTMWrapper system consists of five primary classes: Controller, XTMParser,

Builder, TopicMapWalker and Handler. The Controller class is mostly a work

dispatcher and the other four classes undertake the specific work. They communicate

with each other and cooperate to populate the database with the data in the requested

XTM file. This section will introduce the main functions in each class and how the

classes call each other. Figure 13 reveals the respective functionality of the classes

and their collaboration as a whole.

 31

Figure 13: Classes’ responsibilities and relationships

4.2.1 Controller class

This class is mainly used as a general controller that receives parameters from the

Amos II system, parses them for further use, and calls the corresponding functions

from other classes.

Primary methods:

Topic Map main memory
data representation

Handle

Walk

Parse

Parse the XTM
syntax

Populate the Amos
Database

Build

Token
Trigger

XTM
Tokens

and
Data

Controller

Builder

XTMParser

TopicMapWalker

Handler

Input
arguments

Output to
Amos II

Data Flow Control Flow

Classes

Traverse the Topic
Map main memory

data
representation and

dispatch the
translation work

Responsibility

Check XTM syntax
and build a Topic

Map main memory
data

representation

Legend:

 32

void load(CallContext cxt, Tuple tpl)

Description

The Java method function “load” implements the Amos II foreign

function loadXTM. It is as well the main control function in the class. It

receives arguments from Amos II and loads the input XTM file. Then it

calls other classes to parse the XTM file and populate the database.

Parameter
cxt for communicating with the Amos II context [10]

tpl for holding the argument(s) and the result(s) of the function

Result
If the file is imported successfully, a string indicating the specified XTM

file is loaded is returned.

void buildTopicMap (String tmSrc, String baseURL)

Description
This Java method calls the Builder class to build a Topic Map main

memory data representation for the file specified by tmSrc variable.

Parameter
tmSrc for getting the required XTM file

baseURL for setting the URL attribute of topics.

Result
If no exception happens, a Topic Map main memory data

representation will be created and set to the member variable m_tm.

void wrapTopicMap ()

Description
This method wraps the input XTM file and topics from its mergeMap

and populates the database.

4.2.2 Builder class

This class is taken from org.tm4j.topicmap.utils.XTMBuilder [17] and rewritten. It

 33

parses and imports Topic Map information from XTM files conforming to the XTM

1.0 DTD and specification [1].

Primary method:

void build (InputSource src, Locator srcLoc, TopicMap tm)

Description

This method parses XTM files and builds the Topic Map main memory

data representation for the file specified by srcLoc. It’s called by the

Controller class.

Parameter

src: Indicates the InputSource to parse and it is passed to the

XTMParser class.

srcLoc: Sets the resourceLocator of the Topic Map.

tm: The Topic Map main memory data representation to which parsed

Topic Map objects will be added to.

Result
If no exception happens, a Topic Map main memory data

representation will be created for the specified XTM file.

Rewritten methods:

String assignID (Locator loc, String id)

Description

This method generates the id attribute for the Topic Map objects If the

id attribute is not specified by the original document, a new id string will

be created and assigned to it by generateID() method.

Parameter
loc: The URL address to be associated with the ID attribute.

id: The id attribute read from the XTM file.

Result

If id is not an empty string, or one object with the same id has not yet

been parsed before, an id string appended by “ID (as a flag) is

returned. Otherwise, a new string is generated and returned.

 34

String assignID(String elementID)

Description

This method generates the id attribute for the Topic Map object. If the id

attribute is not specified by the original document, a new id string will be

created and assigned to it by generateID() method.

Parameter elementID: The id attribute read from the XTM file.

Result

If an object with this id has not yet been parsed before an id string

elementID appended by “ID (as a flag) is returned. Otherwise, a new

string is generated and returned.

void resourceData (String id, String data)

Description
This method associates resourceData and its id to corresponding

variantName or occurrence. Data and ID are separated by “<”.

Parameter
id: The id attribute for this resourceData read from the XTM file.

data: The value of this resourceData read from the XTM file.

void ref (String id, int refType, Locator refValue, Locator base)

Description
This method resolves the references to topics in case of topicRef,

subjectIndicatorRef and resourceRef.

Parameter

id: The id attribute for the referencing object read from the XTM file.

refType: The type of the reference: resource, subjectIndicator or topic.

base: The current valid base locator for the referencing object.

4.2.3 XTMParser class

The class org.tm4j.topicmap.utils.XTMParser [18] parses XTM tokens and calls

 35

corresponding functions in the Builder class for appropriate processing.

4.2.4 TopicMapWalker class

The class org.tm4j.topicmap.utils.TopicMapWalker [19] traverses the Topic Map

main memory data representation built by class Builder and calls functions in Handler

for the wrapping. The traverse goes from topicMap to topics and then processes

associations.

4.2.5 Handler class

This class implements WalkerHandler [20] in order to wrap external XTM files and it

also populates the database. On the one hand, it is called by TopicMapWalker while it

goes through the Topic Map main memory data representation. On the other hand, it

communicates with the Amos II system and transfers the XTM information. It’s the

core of the XTMWrapper system

Primary methods:

For each element like topic, baseName and association, the class offers one start

function and one end function. Elements are be pushed to a stack when they starts and

popped when they end. The stack maintains the order of the elements being processed

and provides information for previous elements. The topicMap object is always on the

bottom of the stack while the current object is on the top of the stack.

Methods:

boolean startTopic (Topic t)

Description

This method creates a topic object in Amos II and populates its id and

url attributes. Then it attaches the topic to the ongoing topicMap by

setting the function topic (topicMap)->TM_topic. Finally, it pushes the

topic object into the stack.

Parameter t: The topic to be created.

 36

Result If no exception happens, the method returns true.

void endTopic (Topic t)

Description This method pops the topic from the stack.

Parameter t: The current topic.

For other elements like theme (scope), type (instanceOf) and roleSpec, the class offers

only one on function, i.e there is not “start” and “end” functions.

Example:

void onType (Topic type)

Description

This method creates an implicit topic object and populates the

instanceOf (TM_topic / TM_occurrence / TM_association) -> TM_topic

functions in Amos II. The resolvents are decided by the previous

element type of the referencing topic.

Parameter type: The referencing topic to be created.

Another method createTopic is particularly defined for creating both explicit topics as

well as implicit topics. Explicit topics are topics explicitly stated as topic objects;

while implicit topics are those referenced from other elements.

Oid createTopic(String id, String address, Locator l)

Description

This method creates both explicit and implicit topics in Amos II and

populates their id and url attributes. It also handles the topics from the

mergeMap.

 37

Parameter

id: id attribute of the topic to be created.

address: url attribute of the topic to be created.

l: resource locator attribute of the topic to be created.

Result
If no exception happens, the method returns a proxy object for the topic

created in Amos II.

4.2.6 Sequence and Collaboration

Figure 14 is the sequence diagram for the system. It depicts the rough method-calling

and message-passing sequence of the XTMWrapper system including all five classes

presented above. It focuses on the time sequence of the activities of the classes. The

Controller always makes decision and directs other classes to do what it wants them

to do. Firstly, it deals with the input arguments with its member method. Then it calls

the Builder to build the input Topic Map and the mergeMaps. The processed

mergeMaps are put in a set for wrapping. Thereafter, it creates the Handler and

connects the Handler to TopicMapWalker which walks through the input Topic Map

and mergeMaps. While walking, the Handler is called to wrap objects in the Topic

Map main memory data representation. That is the most important part of the whole

course. There is also a sequence for the wrapping described by the figure.

 38

 : Controller : Controller : Builder : Builder : XTMParser : XTMParser : TopicMapWalker : TopicMapWalker : Handler : Handler

Receive Input

Parse Input

Build Topic Map

Parse Topic Map

Topic Map Tokens

Topic Map Constructure

Set Handler

Create

Walk Topic Map

Build mergeMaps

Parse mergeMaps

mergeMap Tokens

mergeMap Construct

Wrap Topics

Walk mergeMaps

Wrap Topics

Connect Amos

createTopic()

Wrap BaseNames

Wrap Variants

Wrap Occurrences

Wrap Associations

createTopic()

Wrap TopicMap

Figure 14: Sequence Diagram for XTMWrapper

 39

Figure 15 is the Collaboration Diagram of the XTMWrapper system. It focuses on the

collaboration of different classes. It also shows the calling and message sequence.

 : Controller : Builder

: XTMParser
 : TopicMapWalker

 : Handler

1: Receive Input
2: Parse Input

12: Connect Amos
17: createTopic()
24: createTopic()

3: Build Topic Map
7: Build mergeMaps

6: Topic Map Constructure
10: mergeMap Construct

13: Set Handler
14: Walk Topic Map
22: Walk mergeMaps

11: Create

4: Parse Topic Map
8: Parse mergeMaps

5: Topic Map Tokens
9: mergeMap Tokens

16: Wrap Topics

23: Wrap Topics

18: Wrap BaseNames
19: Wrap Variants
20: Wrap Occurrences
21: Wrap Associations

15: Wrap TopicMap

Figure 15: Collaboration Diagram for XTMWrapper

4.3 Discussion of Problems

The XTMWrapper system accesses XTM files using TM4J. The XTM syntax

checking is implemented by those TM4J classes. It works properly most of the time to

detect duplicated objects and catch syntax errors. However, sometimes warnings for

inappropriate syntax are not detected. For example, there can be only one reference

under the tag <instanceOf>, according to [3]. Let’s suppose we’re going to parse the

following statement:

 40

The parsing result will be two created <instanceOf> intstances and each will have

their own reference. The Builder simply splits the block of the statement into two. The

same happens with the <baseNameString>. If there are, for instance, two

<baseNameString>s (i.e. different strings) under the same <baseName> element, the

parsing result will be as if there were two separate <baseName> elements.

Another example is the case with <resourceRef> under <subjectIdentity>. According

to the XTM DTD [3], there have to be no more than one <resourceRef> under a

<subjectIdentity>. But if it happens to appear more than one <resourceRef> tags, the

latest one will overwrite the earlier one(s).

The purpose of this project is to make it possible to load XTM files into an Amos II

database. A Topic Map main memory data representation is built after parsing. One

alternative solution would be, to populate the database while reading tokens from the

source file. This would make the performance better, because checking the syntax and

building the Topic Map main memory data representation are resource consuming.

However, it’s very complicated to do syntax checking and correcting and that is why

it is simpler with the temporary main memory representation of the XTM file as is

done now.

The most important reason for having a temporary main memory TopicMap

representation is to handle forward references. That is, often topics created earlier

may have to be modified, removed or merged into another topic later when processing

the whole file. For instance, two topics having the same baseNameString in the same

scope have to be merged together. (According to the XTM specification, topics in one

topicMap can not be assigned the same baseNameString in the same scope.) Suppose

<topic id=“sushi”>

 <instanceOf>

 <topicRef xlink:href = “#asian_food”/ >

 <topicRef xlink:href = “#japanese_food”/ >

 </instanceOf>
</topic>

 41

two topics A and B have the same BaseNameString in the same scope. And A has

been created first. Then when B is being processed, the wrapper will remove A from

the Topic Map main memory data representation and create a topic as a union of both

A and B. The simple populating-while-reading implementation might have problems

in such cases. Moreover, such an implementation would have roll-back problem if

some syntax error interrupt the program. Therefore, it has been decided to keep the

parsing and building implementation as it is in TM4J.

It has been required in the project to include a baseURL attribute for each topic.

Actually, the Topic Map data model does not define this attribute for topics. In

addition, it has to be also taken in account that it’s tricky to define a baseURLs for

topics from mergeMaps. The current solution is to set the file address as a baseURL

for mergeMap topics. A possible alternative is to use the baseURL given by the user

to as a baseURL for the mergeMap.

The performance of the developed wrapper is not yet tuned. What can be mentioned

here is that, it takes some time to build the Topic Map main memory data

representation when the XTM file is loaded for the first time. For example, loading

the XTM file “http://www.techquila.com/tmsamples/xtm/tmworld.xtm” which

contains 562 topics costs 4.6 seconds; while loading

“http://www.isotopicmaps.org/tmql/tmql-resources.xtm” containing 108 topics in the

same environment costs only 2.0 seconds. It can be further improved by providing a

brand new front-end specially customized for Amos XTMWrapper.

There are some remaining problems in the current design of the schema for Topic

Map Data Model. Let’s look at the following example.

<association id=“employment”>

 <scope>

 <topicRef xlink:href = “#1990s”/ >

 <topicRef xlink:href = “#university”/>

 </scope>

</association>

 42

The DTD [3], corresponding to such a part of a Topic Map, is:

It is obvious that there can be no more than one scope under an association, while

there can be multiple references under one scope. Since the schema does not model

the scope feature as an object, the solution is to have multiple references under an

association with the purpose of scope. So, the constraint on the cardinality of scopes is

missing.

The following is another example about how the defined schema works. The XTM

DTD [3] requirements for the “subjectIdentity” element looks like:

It means there can be only one resourceRef under subjectIdentity while it is allowed to

have multiple topicRef and subjectIndicatorRef. Since the model doesn’t distinguish

the purposes of references, the cardinality for topic references under subjectIdentity

without considering the purpose is still a paradox. The wrapper works currently for

topicRef and subjectIndicatorRef in order to avoid uniqueness violation.

<! ELEMENT subjectIdentity (resourceRef?, (topicRef | subjectIndicatorRef)*) >

<! ELEMENT association (instanceOf?, scope?, member+) >

<! ELEMENT scope (topicRef | resourceRef | subjectIndicatorRef) + >

 43

5 Conclusion and future work

The developed XTMWrapper enables Amos II to access XML Topic Map files

transparently by wrapping XTM data sources to populate the Amos II database. A

generic Topic Map Schema was developed that can represent any Topic Map

definition. The Topic Map definition is loaded into the database from XTM files using

XTMWrapper. When XTM files have been loaded into the database their contents can

be queried using AmosQL. The development of the wrapper has been based on JDK

1.5 and the Amos II Java interfaces. Some classes from TM4J are used for parsing

XTM files and building the intermediate Topic Map main memory Java

representation.

The XTM syntax checking and the schema mapping have some limitations and can be

generalized, as presented in Section 4.3. Another issue is updating the XTM files

loaded into Amos II. One solution is to develop an XTMWriter that would write new

XTM files. This issue requires further investigations. Wrappers for other Topic Map

syntax, e.g. LTM [4], can also be implemented by making a few changes in the

schema translation. Finally, the performance can be improved by tuning the program.

6 References

[1]. TopicMaps.Org Authoring Group: XML Topic Maps (XTM) 1.0 Specification

 44

(2001-08-06).

http://www.topicmaps.org/xtm/1.0/

[2]. L. Garshol, G. Moore, JTC1/SC34: Topic Maps — Data Model (2006-06-18).

http://www.isotopicmaps.org/sam/sam-model/

[3]. TopicMaps.Org Authoring Group: XTM 1.0 Document Type Declaration

(Normative).

http://www.topicmaps.org/xtm/1.0/index.html#dtd

[4]. L. Garshol: The Linear Topic Map Notation Definition and introduction (v. 1.3).

http://www.ontopia.net/download/ltm.html

[5]. TM4J Project. http://www.tm4j.org/

[6]. TMAPI. http://tmapi.org/

[7]. TMAPI 1.0 Interfaces for TM4J. http://www.tm4j.org/tmapi.html

[8]. T. Risch, V. Josifovski, t. Katchaounov: Functional Data Integration in a

Distributed Mediator System in P. Gray, L.Kerschberg, P.King, and A.Poulovassils

(eds.): Functional Approach to Data Management - Modeling, Analyzing and

Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003.

http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf

[9]. S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov, T. Risch, and M. Sköld:

Amos II User's Manual.

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html

[10]. T. Risch, D. Elin: Amos II Java Interfaces, Uppsala Database Laboratory (2000).

http://user.it.uu.se/~torer/publ/javaapi.pdf

[11]. Uppsala Database Laboratory Amos II Wrappers.

http://user.it.uu.se/%7Eudbl/amos/wrappers.html

 45

 [12]. Wikipedia: Database (Retrived on 2007-02-17).

http://en.wikipedia.org/wiki/Database

[13]. L. Garshol: What Are Topic Maps (2002-09-11).

 http://www.xml.com/pub/a/2002/09/11/topicmaps.html

[14]. L. Garshol, G. Moore, JTC1/SC34: Topic Maps — XML Syntax (2006-06-19).

http://www.isotopicmaps.org/sam/sam-xtm/

[15]. S. Pepper: The TAO of Topic Maps — Finding the Way in the Age of Infoglut.

http://www.ontopia.net/topicmaps/materials/tao.html

[16]. Wikipedia: Topic Map (Retrieved on 2007-02-17).

http://en.wikipedia.org/wiki/Topic_Map

[17]. TM4J Project: API Documentation — org.tm4j.topicmap.utils.XTMBuilder.

http://tm4j.org/tm4j/docs/apiDocs/org/tm4j/topicmap/utils/XTMBuilder.html

[18]. TM4J Project: API Documentation — org.tm4j.topicmap.utils.XTMParser.

http://tm4j.org/tm4j/docs/apiDocs/org/tm4j/topicmap/utils/XTMParser.html

[19]. TM4J Project: API Documentation — org.tm4j.topicmap.utils.TopicMapWalker.

http://tm4j.org/tm4j/docs/apiDocs/org/tm4j/topicmap/utils/TopicMapWalker.html

[20]. TM4J Project: API Documentation — org.tm4j.topicmap.utils.WalkerHandler.

http://tm4j.org/tm4j/docs/apiDocs/org/tm4j/topicmap/utils/WalkerHandler.html

