
 ActiveTM: A Topic Maps – Object Mapper

Benjamin Bock

University of Leipzig, Johannisgasse 26, 04103 Leipzig, Germany

bb--tmra2008-activetm@bock.be

Abstract. Currently, the most common way to programmatically
access Topic Maps data is the use of a Topic Maps API, like TMAPI.
Another approach, besides the use of a query language like TMQL, is
the encapsulation of the Topic Maps related code in domain-specific
model classes. This concept is similar to object-relational mapping
(ORM) which encapsulates access to a relational database inside the
model classes. These techniques decouple the data store specific code
from the business logic. For ORM, there are several prevalent design
patterns, most notable the Active Record pattern by Fowler. For Topic
Maps, no such pattern is established. This paper introduces Active
Topic Maps, a pattern for Topic Maps – object mapping, the domain-
specific language ActiveTMML to define such a mapping, and a
prototypical implementation, called ActiveTM. ActiveTM is based on
Ruby Topic Maps and also supports the generation of web-forms based
on ActiveTMML definitions. This full-featured software stack greatly
improves the development productivity of Topic Maps based portals
compared to other solutions.

1 Introduction

The Topic Maps Data Model (TMDM) [1] offers many liberties while designing
an ontology. Many classes and methods are required to offer the full flexibility
and functionality of the TMDM to a programmer using a Topic Maps engine with
a generic application programming interface (API), e.g. Ruby Topic
Maps (RTM) [2]. The parameters of many of these methods are manifold. This is
because the Topic Maps constructs represented as instances of the classes have
many properties to be retrieved and modified. All these methods are aligned to
the TMDM and not optimized for the particular domain. The development of a
domain application requires the programmer to either use the generic TMAPI-

Maicher, L.; Garshol, L. M. (eds.): Subject-centric computing. Fourth International Conference on Topic
Maps Research and Applications, TMRA 2008, Leipzig, Germany, October 16-17, 2008, Revised Selected
Papers. (Leipziger Beiträge zur Informatik: XII) - ISBN 978-3-941152-05-2

204 Benjamin Bock

like methods directly or to encapsulate them in domain model classes. Here,
TMAPI does not only refer to the Java- and PHP-based standardized APIs [3] [4]
but to any Topic Maps API with a similar set of functions.

The encapsulation in domain model classes allows to use only the model objects
in the other parts of the application because the program code to access the data
store once resides solely in the model. This technique is commonly referred to as
Model-View-Controller (MVC) pattern [13]. The creation of these model classes
is straightforward from the definition of an ontology but still requires some
amount of work. The idea presented here is to define the ontology in a domain-
specific language (DSL) [6] and use this to generate the model classes, including
the code to retrieve and persist the objects in a Topic Maps data store.

The prevalent functions of persistent storage are create, read, update, and delete
(CRUD) [14]. Create and update include scrutinizing the constraints for the
particular data objects. Using TMAPI directly does not allow to check particular
constraints of the domain model. The consistency of a topic map can be verified
afterwards using a custom constraint language or eventually with Topic Maps
Constraint Language TMCL [12]. Deletion of data objects may be restricted due
to other constraints or may entail other deletions or updates. In relational
databases, these functions may trigger functions to preserve consistency. For
Topic Maps, no standardized approach exists. Additionally, access control based
on data in the topic map is needed in real world applications but not provided in a
standardized way by current solutions. Access control is not covered in this
paper.

2 Previous Approaches

The most commonly used technique to access Topic Maps data is the usage of a
library with a TMAPI-like interface. A goal is to encapsulate and thus simplify
the usage of a TMDM data store using a special API. The next subsections
illustrate the usage of TMAPI and two previous approaches to optimize the way
how Topic Maps data is accessed and how a domain can be modeled.

The technique object-relational mapping (ORM) is, besides using SQL, the
predominant way to access relational databases. The popular Active Record
design pattern implements ORM. The homonymous Ruby library offers a DSL to
describe domain model classes and transparently implements the database access
for these classes.

Bringing together these two techniques finally leads to the concept of Topic
Maps – object mapping.

ActiveTM: A Topic Maps – Object Mapper 205

2.1 A Basic Read Operation using TMAPI

The following example illustrates the steps necessary using Java TMAPI 1.0 to
read a certain name from a topic t. It does not even include handling of scopes
but it is already quite lengthy.

// get typing topic (pseudo code)
Topic type = tm.getTopicBySubjectIdentifier
 ("http://psi.example.com/firstname");

// iterate over all topic names

Iterator i=t.getTopicNames().iterator();
while (i.hasNext()) {
 TopicName tn = (TopicName) i.next();
 // check type
 if (tn.type == type) {
 // use name, e.g. output it
 System.out.print(tn.getValue());
 break;
 }
}

HEUER introduces the concept of accessing characteristics of a topic using a Hash-
like syntax in the Topic Maps engine Mappa [5]. Transferring this concept to the
Java language, the previous example would look like this1:

Set<TopicName> names = t.get
 ("-http://psi.example.com/firstname");
for (TopicName tn : names) {
 System.out.print(tn.getValue());
 // break after the first one
 break;
}

This is significantly shorter than the first example. Using it in Python, the
language Mappa is written in, is even shorter as Python’s Syntax is more terse
than Java’s. In Ruby Topic Maps, the Hash-like access works the same way as in
Mappa:

puts t["-http://psi.example.com/firstname"].first.value

Still, the way to access the data is not domain specific. The subject identifier in
the string cannot be checked by a compiler nor by an interpreter at runtime.
Assuming the topic t represents an object p of class Person. There should be
two methods in p: one to get and one to set a single first name. Depending on the

1 This implicitly assumes an API using Java generics

206 Benjamin Bock

domain ontology (where multiple first names may be allowed), this could also be
methods to get and set a list of first names and additionally to add and remove
single first names from this list.

2.2 Topic Maps Objects

MOORE, AHMED, and BRODIE demonstrated Topic Map Objects (TMO) at the
TMRA 2006 conference [16]. TMO is a framework providing domain-specific
classes to retrieve and update Topic Maps data in a distributed environment.
MOORE, AHMED, and BRODIE don’t build upon TMAPI but on Topic Map
Webservices (TMWS). TMWS provides access to a topic map using a SOAP
interface. The goal of TMO is to unify the advantages of TMWS with the
features of modern object-oriented languages like Java and C#. The resulting
framework allows programmers to work with domain objects without knowing
the TMDM in detail.

TMO consists of two components: The first component of TMO is TMWS. The
TMWS framework used is functionally equivalent to TMAPI. In this component,
no higher level of abstraction or domain-specificity is introduced. From the
perspective of abstraction, the feature of transactional updates is not relevant,
however this could be exploited to integrate constraint checking. The intention of
this feature seems to be optimization of network traffic. The Object Manager
Service (OMS) is the second component of TMO. This component can create
domain-specific objects from Topic Maps data and provide an application with
these objects in a serialized fashion. The topic maps ontology data is part of the
class definition while the instance data resides in the object. The object manager
contains the program code to read all properties of the domain object from the
topic map and fill the private variables in the objects at the time of its
construction. The updates in the objects can be transferred back to TMWS later.
The domain classes contain the program code to update the objects, later read
accesses see the current values.

TMO is written in the C# programming language for the .NET platform. It is part
of the commercial product TMCore by Networked Planet Limited, Oxford, UK,
to which the authors belong [at the time of writing]. A graphical user interface,
based on Microsoft Visual Studio is planned2 but not publicly available yet. It
involves creation of an XML document which makes the annotation of domain
classes unnecessary. The automatic creation of program classes seems not to be
planned, so one has to assume that the code to update a topic map has to be
written by hand. The following example shows the definition of a class Person
with a property firstname.

2 According to MOORE, in a private conversation on 2008-04-06

ActiveTM: A Topic Maps – Object Mapper 207

[TopicTypeAttribute("http://www.networkedplanet.com/person")]
public class Person : TopicMapObjectBase {
 private string m_name;
 private string m_age;

 [TopicNameAttribute()]
 public string FirstName {
 get { return m_name; }
 set {
 OccurrenceSet(this, "FirstName", value);
 m_name = value ;
 }
 }
 [TopicOccurrenceAttribute
 ("http://www.networkedplanet.com/ octypes/age")]
 public string Age {
 get { return m_age; }
 set {
 OccurrenceSet(this ,"Age" , value);
 m_age = value ;
 }
 }
}

The example is derived from one of the examples given in [16] and allows to
reason that TMO uses a pre-TMDM data model3, topic names do not have a type
yet. The occurrence age shows how the type would be specified. Another
observation is that there is no clear distinction between OccurrenceSet and
TopicNameSet. This might be a typo in the document, though.

A graphical user interface would clearly be an advantage of this solution, while
the usage of a web service may lead to performance deficits compared to the
usage of a local library’s API. TMO objects can only be used asynchronously, a
direct update of the underlying topic map is not possible with this architecture.
The domain-specific information is given at (at least) two locations: the object
manager (for reading) and the domain classes (for updating).

2.3 Bogachev’s Subject-Centric Programming Language

In [8], BOGACHEV presents the similarities of Topic Maps and the COBOL
programming language. The advantage of COBOL is the definition and
manipulation of business data in the language. In many modern programming
languages this domain specific information was outsourced to a relational

3 At the time of writing of TMO, TMDM was not finalized, so in fact this is not a big
surprise.

208 Benjamin Bock

database, decreasing transparency and simplicity. With these assumptions in
mind, BOGACHEV developed his subject-centric programming language [9].

He criticizes that object-oriented languages help to model things on a computer,
but not to represent knowledge about these things. He questions what happens if
information changes over time and how to deal with information from different
sources. Furthermore, he asks how interference rules and calculated values can
be respected in such a system and how visibility and update rights can be bound
to specific user groups.

To address all this, he defines metaproperties which are classes derived from a
specific property type. In the example, the property firstname is derived from
ActiveTopic::Name4.

class FirstName < ActiveTopic::Name
 psi 'http://psi.ontopedia.net/firstname'
 historical true
 card_max 1
 domain :person
end

class Person < ActiveTopic::Topic
 psi 'http://psi.ontopedia.net/Person'
 name :firstname
end

For both, the definition and the usage, BOGACHEV orientates himself at the syntax
of the Active Record Ruby library, but there is no implementation5.

A continuative work is Authoring topic maps using Ruby-based DSL: CTM, the
way I like it [10], a domain-specific language for defining Topic Maps ontologies
and facts in a Ruby-based syntax. The emphasis here is not a programming
framework but an alternative approach to the Compact Topic Maps Notation
(CTM) [11].

2.4 The Active Record Design Pattern

FOWLER develops the design pattern Active Record [15] which implements the
principle of object-relational mapping. The program code to access the storage
layer (i.e. the relational database) is directly part of the model classes in Active
Record. The objects are created or retrieved from the database using class

4 The choice of the namespace prefix Active for the class and the usage of a Ruby-
based syntax make it obvious that he has the Ruby on Rails component Active Record
in mind.

5 Private conversation, 2008-04-02

ActiveTM: A Topic Maps – Object Mapper 209

methods from the same class. They are stored using instance methods of the
concrete objects.

The Ruby library Active Record6 is part of the web application framework
Ruby on Rails7. It implements the homonymous design pattern. In Active Record,
the names of the getters and setters for simple properties are derived from the
column names in the database schema. They cannot be defined in the model
classes and cannot be retrieved from the model classes without an active database
connection. Thus, the complete model definition is available at runtime only.
Associations between objects are defined using a DSL and not automatically
derived from the database schema using e.g. the foreign keys. For a model class
without associations, a class extending ActiveRecord::Base is sufficient. The
statements to define an association to another class are called has_one, has_many,
and has_and_belongs_to_many. The opposite table (or the join table respectively)
holding the foreign key needs to use the statement belongs_to. For all
statements, there are parameters to refine the definition if the schema does not
match the naming convention exactly. The example shows the definition of a
class Person with some associations and the creation of a single instance. The
exact usage can be found in the Active Record API documentation8.

class Person < ActiveRecord::Base
 belongs_to :home_country, :class_name => "Country"
 has_many :cars, :foreign_key => "owner_id"
end
p = Person.create
p.firstname = "Benjamin"
p.save

When calling the method save the library executes the following statement9.
INSERT INTO 'people' (first_name) VALUES ('Benjamin');

The Active Record library provides a second, separate DSL called Migrations to
describe the database schema. Changes to the ontology always require changes to
the database schema and must be reflected there. Thus, a restart of an application
is needed whenever the ontology and consequently the schema changes.

6 http://wiki.rubyonrails.org/rails/pages/ActiveRecord
7 http://www.rubyonrails.org
8 http://api.rubyonrails.org
9 Please note the table name is “people” but the class name is “Person”. This is a

convention used in the Ruby library Active Record, which contains a pluralization
module. In the class definition this convention can be overwritten

210 Benjamin Bock

3 Domain Modeling

The definition of an ontology is part of the modeling of the domain to which the
application should be specific. Nowadays, software developers are used to model
their problem using object oriented techniques. There are many tools available to
aid such a development process, ranging from a sheet of paper and a pen to
sophisticated UML [17] editors. Integrated development environments like
Netbeans10 or Eclipse11 directly assist writing code in a particular programming
language. The result of a development process is a formal specification of the
model, covering all relevant aspects to address the problem of the given domain.

Defining model classes using UML results in a class diagram from which domain
specific code can be generated. The resulting code is self-contained and does not
include a mapping to a Topic Maps ontology. Our goal is to model a Topic Maps
ontology and the corresponding model classes at the same time. Generally, to
allow an efficient workflow, it is essential to do exactly the things necessary and
avoid everything else. Applied to modeling the ontology of a domain problem,
this includes the description of the relevant entities, their characteristics and
associations.

Using Topic Maps technology, the ontology is part of the topic map itself. The
upcoming Topic Maps Constraint Language (TMCL) [12] strives to standardize
the definition of ontologies in Topic Maps. However, this does not include
naming of classes nor methods. For an ontology to model both, object-oriented
and Topic-Maps-oriented aspects, TMCL has to be augmented or a new language
has to be created. TMCL is not finalized at the time of writing and, following a
pragmatic approach, the creation of a new language was chosen with
ActiveTMML. As a later step, a formal mapping between ActiveTMML and
TMCL should be defined. This could be done using a small ontology which
defines the basic information necessary to create ActiveTMML code out of a
Topic Maps ontology defined in TMCL.

Alternatively, TMCL fragments could be used as parameters to ActiveTMML
statements. The benefit would be a single source for a complete ontology
definition. The downside would be that this would presumably not integrate well
with graphical TMCL editors.

10 http://www.netbeans.org
11 http://www.eclipse.org

ActiveTM: A Topic Maps – Object Mapper 211

4 ActiveTM

ActiveTM is a Ruby library implementing ActiveTMML, the Active Topic Maps
Modeling Language. In this section, firstly ActiveTMML will be introduced, then
the library itself is presented. The library ActiveTM is not the only use case for
ActiveTMML, as it can also be used as a basis for code generation in other
languages.

4.1 ActiveTMML

ActiveTMML is a ontology modeling language for both, Topic Maps and object-
oriented models in a single language. It does not (yet) strive to be feature-
complete regarding the flexibility of the TMDM but to be functional for the
common 80% of use cases. As ActiveTMML is only suitable for ontology
modeling, it is called a domain-specific language (DSL) [6] [7]. DSL are
commonly divided into two types: internal and external DSL. While external
DSL come with their own syntax, internal DSL borrow their syntax from a host
programming language. Consequently, internal DSL are constrained by their host
language’s syntax but they also benefit from their toolchain, i.e. can be compiled
or interpreted using the host language’s tools. This liberates the developer of a
internal DSL from developing a parser and leaves him with adding semantics to
the given syntax. ActiveTMML is an internal DSL using the host language
Ruby12. Compared to other popular programming languages like Java13, C#14, and
Python15, Ruby offers a comparatively free syntax.

There are two flavors of ActiveTMML. The standalone syntax uses just method
calls like model and occurrence in special contexts. The in-class syntax is used
as part of a class definition, as it is done in Active Record, and will be detailed in
the ActiveTM section. The following example shows the standalone syntax:

model :Person do
 name :firstname
 name :lastname
 occurrence :age
end

12 http://www.ruby-lang.org
13 http://java.sun.com/
14 http://www.ecma-international.org/publications/

standards/Ecma-334.htm
15 http://www.python.org/

212 Benjamin Bock

This standalone ActiveTMML code technically calls a method model and passes
two parameters: The symbol16 Person and a block of code, introduced by do and
ended by end. This is common Ruby syntax and can be executed by any Ruby
interpreter. Consequently, ActiveTMML code can be seamlessly mixed with
other Ruby code.

The method model uses a special context in which the definition of this particular
model is evaluated. A context is a class, module or object which implements
methods corresponding to the statements of ActiveTMML. During the evaluation
of the block (which is the definition of a domain model class), the calls are
delegated to the context class, module or object.

The code of the method model and the context can be anything, depending of
the concrete implementation of the ActiveTMML language. Possibilities range
from generating classes (as done in section 4.2) to generating files (e.g. source
code for a particular language or library, as proposed in section 5). It is also
possible to produce any other output, for example a relational database schema
and ActiveRecord classes based on the model. There are prototypes fulfilling
exactly this purpose. Additionally, the output of a TMCL file is an option.

The obvious object-oriented interpretation of the example above is to create a
class called Person with getters and setters for the properties firstname,
lastname and age. The Topic Maps interpretation of the same definition is a
topic identified by the item identifier17 “Person” typing other topics, its instances.
The default identifier can be overwritten using the method psi in the code block.
It is not possible to define PSIs of instances directly in ActiveTMML. An
algorithm generating PSIs for instances depends on the concrete implementation
of an ActiveTMML interpreter. Section 4.3 explains how this was solved in
ActiveTM.

The example above defines three characteristics, two names and one occurrence.
The argument to the methods name and occurrence is interpreted as an item
identifier for the type of the characteristic. This can be overwritten using the
keyword parameter psi in each method. The datatype for names is always string,
for occurrences it defaults to string, too. The datatype of occurrences can be
overwritten using the keyword parameter datatype.

A slightly bigger example shows the usage of keyword parameters in the Ruby
syntax as well as the definition of a binary association. The definition of an
association consists of a parameter for the name, the role type on this side of the

16 Ruby symbols are similar to LISP symbols. In short, a Ruby symbol is a word preceded
by a colon. It is commonly used as a constant. Technically it is comparable to an
internalized String in Java.

17 The item identifier is relative here. According to TMDM it must be resolved against a
locator to make it absolute.

ActiveTM: A Topic Maps – Object Mapper 213

association, and the association type. The other role type is retrieved from the
name of the association-property (in this case “country”), unless given as the
fourth parameter. In natural languages, the type of the thing referred to, often18 as
is the type of the opposite role in a Topic Maps ontology.

model :Person do
 name :firstname, :psi => "http://psi.example.com/first"
 name :lastname, :psi => "http://psi.example.com/last"
 occurrence :age, :datatype => "xsd:integer"
 has_one :country, "inhabitant", "country-inhabitant"
end

The statement has_one adds the constraint that there is only one country in the
given association with this a particular person. The pendant to has_one is
has_many. These two method names are inspired from the Active Record library,
their parameters and interpretation differs due to the different intention of
modeling.

An obvious feature to add to the ActiveTMML are model constraints, like
defining cardinalities. This could be achieved using additional keyword
parameters for example. The downside is the increasing complexity of both, the
model code and the interpreter code. Once TMCL is finalized, it should be used
to define finer granular constraints. For the implementation of ActiveTM, the
same functionality is achieved using filters and validations as it is done in Active
Record.

4.2 Definition of Model Classes in ActiveTM

Besides the standalone ActiveTMML code, a class definition in ActiveTM can be
done using the standard Ruby syntax to define a class. Therefore, the class needs
to be provided with the necessary code for the ActiveTMML statements. This can
be done in two ways: by extending the superclass ActiveTM::Base (analogous to
Active Record) or by including the module ActiveTM::Topic as a Mixin. The
latter allows more liberties in terms of the class hierarchy.

class Person < ActiveTM::Base
 topic_map "http://psi.example.com/"
 psi "http://psi.example.com/ontology/person"

 name :firstname

18 An exception is for example the artificial language Lojban which was developed by the
Logical Language Group in 1987. In this language, not the other role is addressed but
the relation of the other thing to the current role. A child would refer to its “mother”
(English term, natural referencing style) as “the one I am child of” (English term,
Lojban referencing style), thus using the own role type.

214 Benjamin Bock

 names :middlenames
 name :lastname
 occurrence :age, :datatype => "xsd:integer"
 has_one :country, "inhabitant", "country-inhabitant",
 :class => :Country

 def fullname
 "#{firstname} #{lastname}"
 end
end

This creates a single class Person. The definition of the class itself is pure
Ruby code. The statements topic_map, psi, name and so on are basically calls to
methods in the class scope. The definitions of these methods are provided by the
class ActiveTM::Base (or by the module ActiveTM::Topic respectively). Each
instance of the class holds a single reference to a Topic in the underlying Topic
Map.

The example above also introduces the method “topic_map”. This method
defines the base locator for this class. The statement “names” introduces a
characteristic which may occur multiple times. Another addition is the usage of
the keyword parameter “class” with the symbol “Country” in the “has_one”
statement. This specifies that the retrieved object should be interpreted as an
instance of class Country, no matter what other types it is instance of.

The definition of the method fullname in the previous example shows the
mixture of of normal Ruby code with the ActiveTMML code, allowing to create
virtual properties based on the definition of existing ones. The number-sign and
the curly brackets are Ruby string interpolation syntax. This allows to embed the
results of the methods called directly in the string.

4.3 Usage of ActiveTM Objects

As with the definition, the usage of ActiveTM objects is aligned with Active
Record. Until now, only the ontology layer was covered. For the usage, the
instance layer comes into play. In the instance layer, referencing instance topics a
requirement. Referencing topics works using identifiers (internal, subject
identifiers or subject locators) for creating and querying particular topics. The
language-internal object references serve all other purposes.

The following example shows the creation of a new Person-object. A parameter
can be passed to the create method to define an identifier. If not given, an
identifier will be generated. The default algorithm to generate an identifier is to
append a random fragment identifier to the type PSI. This can be overwritten by

ActiveTM: A Topic Maps – Object Mapper 215

providing the class with a instance method generate_psi which acts as a hook.
This approach is similar to the before_save hook in Active Record.

p = Person.create("johndoe")
p.firstname = "John"
p.add_middlename "George"
p.lastname = "Doe"
p.save

As shown in the example, for single characteristics, a setter and a getter are
created, for multiple characteristics an add method as well as a remove method
and a getter are created. The same principle applies to has_one and has_many.

Similar to Active Record, there is a default finder as well as dynamic finder
methods for the characteristics. The default finder takes an identifier, the
dynamic finders accept an argument like the setter methods. The example shows
several ways to retrieve the single topic created above. There are also finders to
find multiple objects instead of only returning only the first one found. As
always, the usage follows the Active Record example.

p = Person.find("johndoe")
p = Person.find_by_firstname("John")
ps = Person.find(:all)
p = Person.find_all_by_firstname("John")

5 Code Generation

The methods to access the characteristics and association of topics follow a
common scheme which can be formalized in a code template. In ActiveTM these
templates are evaluated at runtime. ActiveTMML can also be used to generate
code or other output in any language, given templates of code to fill the domain-
specific parts in. The following example shows a simplified but working
implementation of the name-method which creates a getter for the firstname-
property. The comment below shows the code which is actually send to eval.

def name(property_name, options={})
 name_type = options[:type] || property_name
 eval <<-EOD
 def #{property_name}
 @topic[\"#{name_type}\"].first.value
 end
 EOD
end
#def firstname

216 Benjamin Bock

@topic["firstname"].first.value
#end

Additional to the generation of accessor methods, also meta information can be
integrated into the definition of classes. Active Record creates a method called
“columns” which introspects the schema and returns a list of database columns
for this model object. The information about this columns can be used to
generate so-called “scaffolds”, complete CRUD users interfaces for the specific
model objects. They provide the developer with a basic user interface for free.
This basic interface can be used for administrative purposes as well as the basis
for the interface for end users.

6 Ontology Introspection

Besides the accessor methods for the characteristics and associations and besides
the introspection methods, the classes also provide a getter topic which returns
the underlying Ruby Topic Maps topic object. Using this topic, all aspects of the
TMDM can be addressed. Setting the flag acts_as_topic enables the methods
directly in ActiveTM objects, for example the set of occurrences:

standard way
p.topic.occurrences
direct way
class Person
 acts_as_topic
end
p.occurrences

The another flag, called acts_smart enables ActiveTM objects to look into the
Topic Map and find possible characteristics for properties which are not
explicitly defined. Assuming that for class Person, no characteristic shoesize is
defined yet, a smart acting ActiveTM object tries to find a name or an occurrence
with an identifier matching “shoesize”. This works through Ruby’s
method_missing which handles calls to non-existing methods. Analogously to the
getter, using the not-yet-defined setter creates an occurrence19:

p.shoesize = 38 # creates occurrence,
 # type "shoesize", datatype "xsd:integer"
p.shoesize # returns 38

19 Given a string, also a topic name could be created. This depends on the concrete
implementation of this function.

ActiveTM: A Topic Maps – Object Mapper 217

Upon success, a set of getters and setters may be created to minimize the
overhead of search names and occurrences another time.

Additionally, also the topic names of name types and occurrence types could be
searched to find objects corresponding to the method name of the undefined
methods.

By its nature, this kind of ontology introspection is highly experimental and may
be suitable for programmatically exploring a topic map but not for productive
use.

7 Conclusion and Outlook

ActiveTM augments the possibilities of Ruby Topic Maps in a productivity-
enhancing way. It enables usage of domain-specific access while not constraining
the generic Topic Maps API. ActiveTMML can be used to define ontologies and
generate code, code snippets, and ontology documentation. The explicit
definitions clearly define the resulting code and thus provide a predictable
behavior independent of the data in the topic map. This enables productive usage
of ActiveTMML definitions and ActiveTM classes. The intersection of the
conceptual design between TMCL and ActiveTMML suggests quite a lot
synergies and should be further exploited.

The introspection is rather experimental and not suitable for productive
environments. Changes in the data can result in completely different code
generated and render the application unusable. Still, it may be interesting to
experiment with the introspection, to develop more sophisticated algorithms to
look into the topic maps or interpret commonly used modeling patterns to aid
writing code for productive usage.

References

[1] ISO/IEC IS 13250-2:2006: Information Technology – Document Description and
Processing Languages – Topic Maps – Data Model. International Organization for
Standardization, Geneva, Switzerland.
http://www.isotopicmaps.org/sam/sam-model/

[2] BOCK, B.: Ruby Topic Maps, In: MAICHER, L., GARSHOL, L.M.: Scaling Topic Maps. LNAI
4999, Springer, Berlin (2008)

[3] AHMED, K., GARSHOL, L.M., GRØNMO, G.O., HEUER, L., LISCHKE, S., MOORE, G.: Common
Topic Map Application Programming Interface, 2004
http://www.tmapi.org/

218 Benjamin Bock

[4] HOLJE, E., SCHMIDT, J.: PHPTMAPI.
http://phptmapi.sf.net/, 2006-11-10

[5] HEUER, L.: Semagia Mappa - The Python Topic Maps engine. 19 April 2008.
http://code.google.com/p/mappa/

[6] FOWLER, M.: Domain Specific Language.
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html,
13 February 2004

[7] FOWLER, M.: Language Workbenches: The Killer-App for Domain Specific Languages?
http://www.martinfowler.com/articles/languageWorkbench.html,
12 June 2005

[8] BOGACHEV, D.: COBOL and Topic Maps? Open Session at TMRA 2007.
http://homepage.mac.com/dmitryv/TopicMaps/
TMRA2007/CobolAndTMs.pdf. 2007-10

[9] BOGACHEV, D.: Subject-centric programming language or what was good about COBOL.
Blogentry. http://subjectcentric.com/post/Subject-
centric_programming_language_or_%what_was_good_about_COBOL.
 23. October 2007

[10] BOGACHEV, D.: Authoring topic maps using Ruby-based DSL: CTM, the way I like it.
http://subjectcentric.com/post/Authoring_topic_maps_using_Ruby_ba
sed_DS%L_CTM_the_way_I_like_it, 28 February 2008

[11] ISO/IEC Draft 13250-6:2007: Information Technology – Document Description and
Processing Languages – Topic Maps – Compact Syntax, 2007-11-16. International
Organization for Standardization, Geneva, Switzerland.
http://www.isotopicmaps.org/ctm/

[12] ISO/IEC FCD 19756: Information Technology – Document Description and Processing
Languages – Topic Maps – Constraint Language. International Organization for
Standardization, Geneva, Switzerland, 2008-08-12
http://www.isotopicmaps.org/tmcl/

[13] BURBECK, S.: Applications Programming in Smalltalk-80(TM): How to use Model-View-
Controller (MVC) 1987.

[14] KILOV, H.: From semantic to object-oriented data modeling Bell Commun. Res.,
Morristown, NJ. In: Systems Integration ’90., Proceedings of the First International
Conference on Systems Integration, 1990 pages: 385–393 ISBN 0818690275

[15] FOWLER, M., RICE, D.: Patterns of Enterprise Application Architecture. Addison-Wesley,
2003. – ISBN 0321127420

[16] MOORE, G., AHMED, K., BRODIE, A.: Topic Map Objects. In: Leveraging the Semantics of
Topic Maps, 2006

[17] OMG.ORG: Unified Modeling Language Specification.
http://www.omg.org/technology/documents/formal/uml.html

