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Abstract. The core of  the  second generation Topic  Maps standards
(TMDM, XTM2.0) has been finalized, yet the uptake is still slow. In
this paper, we highlight engineering considerations for a novel backend
for the TM4J open source topic maps engine,  which is currently in
development,  but  already  usable  for  some  purposes.  As  the  name
suggests,  the  “TMDM” backend  is  designed  to  reflect  the  TMDM
specification closely. In fact, it is much closer to the TMDM than to the
internal legacy TM4J data model (which is based on the XTM 1.0 data
model). This motivates a bridging layer between the TMDM and the
XTM 1.0 data model. We emphasize how merging is implemented in
the  “TMDM”  backend  and  conclude  with  some  synthetic  merging
benchmarks of the current “TMDM” backend prototype.
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1   Introduction

A new  generation  of  Topic  Maps  standards  (the  Topic  Maps  Data  Model
[ISO13250-2], XTM 2.0  [ISO13250-3]) was finalized in 2006, yet adoption in
the  community  remains  slow.  TM4J1 is  an  open  source  Topic  Maps  engine
written in Java,  mainly by  KAL AHMED. The most  recent release (TM4J 0.9.7,
published in 2004) is based on the older XTM 1.0  [XTM1.0] standard. While
development  activity  on  TM4J  slowed  after  2004,  TM4J  is  still  the  most
comprehensive open source Java Topic Maps Engine, and several projects build
on TM4J. Thus, TM4J clearly needs an update to support the new Topic Maps
standards.  Updating  TM4J  is  preferable  to  designing  a  completely  new  and

1 See http://tm4j.org/
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independent Topic Maps engine, as,  in the case of an ideal  update,  all  TM4J
legacy application can build on an updated TM4J without need for modification
on their part. This in turn leverages the existing TM4J applications and allows
them a smooth migration path to the new Topic Maps standards.

In this paper, we show the design principles of a novel backend for TM4J, which
is anticipated to lead TM4J to version 2.0. We will use the term “TM4J1” for the
branch  of  TM4J  which  keeps  the  architecture  of  TM4J  0.9.7  and  will,  in
particular, not support the TMDM. We will use the term “TM4J2” for the branch
of  TM4J which  undergoes  the  major  architectural  changes  we are  describing
here.

1.1   Assessment

When starting to work with TM4J1, we were in need of a topic maps engine
which would be able to consume many small automatically generated XTM 2.0
files and merge them into a large XTM file. However, TM4J1 supported neither
the syntax of XTM 2.0 nor the semantics of XTM 2.0 (which is specified by the
TMDM).  Internally,  merging  is  only  done  on  request,  not  instantly,  as  the
TMDM mandates  in  section  6.1:  “Any  change  to  a  topic  map  [...] shall  be
followed by [...] merging”. Each such merging request would apply to the whole
topic  map,  making  “simulated  instant  merging” (by  requesting  such  merging
after every small change) infeasible with respect to performance. Furthermore,
the TM4J1 API is outdated in multiple ways. First, the TM4J1 API is based on an
older  version  of  the  Java  language  (e.g.  it  lacks  support  for  Java  Generics).
Second, the TM4J1 API is slightly, but still significantly incompatible with the
TMAPI  [TMAPI1.0SP1],  giving  rise  to  a  need  for  a  wrapping-layer  around
TM4J1 objects to make them appear as TMAPI objects. The TMAPI itself (as of
version 1.0)  has  not  yet  been updated to  the TMDM, thus  the names of  the
classes and methods in the TMAPI 1.0 do not exactly match the names of classes
and properties of the TMDM.

For these and other reasons, the following desired features have been identified:

1. Internal support for the TMDM,
2. Support for XTM 2.0,
3. Instant merging,
4. Dynamic  merging  (where  the  individual  components  can  still  be

identified),
5. Support for modern Java language features, such as Java Generics,



Towards a second generation Topic Maps engine 185

6. Let TMDM guide the naming of classes, methods and fields,2

7. Translation between the TM4J2 data model and the TM4J1 data model3.

2   The TMDM backend

The  novel  “TMDM”  backend  for  TM4J  is  designed  upon  the  well  known
principle of separation of concerns. This principle guides

1. that  storage  of  Topic  Maps  (in  RAM)  should  be  separated  from  a
merged view of Topic Maps,

2. that a TM4J1 data model view should be separated from a TM4J2 data
model view,

3. that interfaces should be separated from implementations,
4. that interfaces themselves should be separated by concerns,
5. that event handling should be separated.

This is why there is not only one set of classes (or interfaces), but five:
1. The interfaces for TMDM data with read-write access.
2. The interfaces for TMDM data with read-only access.
3. The classes to store TMDM data.
4. The classes to view TMDM data in merged form.
5. The classes to access TMDM data through the TM4J1 data model.

Additionally, a new handling system to efficiently communicate events between
the different layers of objects has been devised.

In the following sections, these layers and subsystems are described. Figure 1
(below) provides an overview over all these layers.

2.1    TMDM interfaces layer (read-write access)

This  layer  contains  interfaces  for  representing TMDM objects,  all  within  the
package org.tm4j.topicmap.tmdm:

2 If the TMDM guides the naming of classes, methods and fields for the “TMDM”
backend as well as for the upcoming TMAPI 2 standard, then the “TMDM” backend
may be automatically compatible with the upcoming TMAPI 2 standard, making a
separate wrapping layer (as in TM4J1) unnecessary.

3 When supporting the TMDM but, at the same time, serving as a backend for TM4J1
applications, there is a need for translating between the TM4J1 data model (which is the
data model of XTM 1.0) and the TM4J2 data model (which is the TMDM).
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1. TopicMap extends Reifiable

2. Topic extends TopicMapConstruct

3. TopicName extends Scopeable

4. Variant extends Scopeable

5. Occurrence extends Scopeable

6. Association extends Scopeable

7. AssociationRole extends Reifiable

8. Scopeable extends Reifiable

9. Scope

10. Reifiable extends TopicMapConstruct

11. TopicMapConstruct

Each of these interfaces contains methods to read and write properties of the
TMDM item type  they represent.  For  example,  the  Topic interface  contains,
among others, the following declarations:

public boolean  addSubjectIdentifier(Locator subjectIdentifier);
public boolean  removeSubjectIdentifier(Locator subjectIdentifier);
public Set<Locator> getSubjectIdentifiers();

As  another  example,  the  TopicName interface  contains,  among  others,  the
following declarations:

public void         setType(Topic type);
public Topic        getType();
public void         setValue(String value);
public String       getValue();

Scopeable  and Scope. The  interface  hierarchy here  differs  from the  TMDM
class hierarchy in that the interfaces Scopeable and Scope are introduced. While
in the TMDM specification, scope is defined verbally (“All statements have a
scope.”), a reflection of this definition is lacking in the original TMDM class
hierarchy: scope is left  to remain an arbitrary set  of topics in each statement
without a unique identity. This is changed in TM4J2. The rationale behind this is
the reasonable assumption that the set of distinct scopes in a typical topic map is
much smaller than the set of scopeables (that is, the set of statements). If this
assumption  is  true,  then  instead  of  storing  a  mutable  set  of  topics  for  each
Scopeable (which typically consumes at least a Java array object header and
pointers to each of the topic objects), it is more memory-efficient to just store a
mutable pointer to an immutable Scope object. It is also assumed that, at query
time, this compression increases cache-locality, as the number of distinct scope
objects  (Scope objects  vs.  sets  of  topics)  to  be  traversed  is  much  smaller.
Furthermore, in case two topics of the same scope merge, changing the affected
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Scope object4 is much cheaper than changing, or even just keeping track of, all
affected  Scopeable objects. However, as TM4J2 is not fully implemented yet,
and also because there is, to date, no well-agreed Topic Maps benchmark suite
(consisting of demo topic-maps in various serialization formats and demo queries
in the yet to be finalized Topic Maps Query Language), all these considerations
are merely theoretical and are still in need of performance evaluation.

2.2    TMDM interfaces layer (read-only access)

This layer contains interfaces for representing TMDM objects which are only to
be read, but not to be written, all within the package org.tm4j.topicmap.tmdm:

1. ReadableTopicMap

2. ReadableTopic

3. ReadableTopicName

4. ReadableVariant

5. ReadableOccurrence

6. ReadableAssociation

7. ReadableAssociationRole

8. ReadableScopeable

9. ReadableScope

10. ReadableReifiable

11. ReadableTopicMapConstruct

Each of these interfaces contains methods to just read properties of the TMDM
item type they represent.  They are  stripped-down versions of their  read-write
counterparts. For example, the ReadableTopic interface contains, among others,
the following declarations:

public Set<Locator> getSubjectIdentifiers();

As another example, the  ReadableTopicName interface contains, among others,
the following declarations:

public ReadableTopic getType();
public String        getValue();

4 Giving up immutability of Scope objects leaves opportunity for two Scope objects
being equal. While avoiding this repetition is the very reason to have Scope objects in
the first place, actually having such repetition just in rare cases has only a tiny effect on
the ratio between actual memory savings and possible memory savings by this method.
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The rationale for having a layer of TMDM interfaces which just allow read-only
access, separate from TMDM interfaces which allow read-write access, is the
case of Virtual Topic Maps. A Virtual Topic Map5 is a view6 on something which
looks like a topic map, but may not actually be a (modifiable) topic map itself.
As one objective of topic maps is to be able to represent the structure of almost
any type of information, it is only consequential to reformulate about almost any
information source7 as a topic map. However, changing such a topic map is often
(unless  it  is  materialized)  not  possible  directly;  however,  changing  the
information source, and having this change reflected in the topic map view, is
possible.  If  the translation between the information source and the topic map
view is a one-way-process (i.e. only from the source to the topic map view and
not the other way around) for theoretical or practical reasons, then there is no
sensible way of implementing the setter methods which modify topic maps. If,
on the caller side, only getter methods are needed (for example, if a GUI view or
another topic maps view is built on the topic maps view), then the more adequate
interface between these two sides is the set of TMDM interfaces which just allow
read-only access.

Each read-write TMDM interface extends the corresponding read-only TMDM
interface. Note that e.g. the return type of ReadableTopicName.getType() is not
Topic but  ReadableTopic,  while  the return  type of  TopicName.getType() is
Topic.  The reason is  that  the  read-only TMDM interfaces  have to  be closed
within themselves, i.e. they should not point into the world of read-write TMDM
interfaces.  Note  also  that  narrowing  the  return  type  when  overriding  (from
ReadableTopic to Topic) is a feature of Java 1.5, thus unavailable at the times
the original TM4J1 architecture was designed.

5 It is unclear to whom to trace the term “Virtual Topic Maps”. However, the earliest
instance of explaining this term, which we could find, is following mailing-list post of
STEVE PEPPER: 
http://www.infoloom.com/pipermail/topicmapmail/2001q3/003190.html

6 A view is something which depends on, and its contents are defined by, what is viewed.
7 “Any information source” does not preclude topic maps themselves as information

sources. For example, as ROBERT BARTA points out in his talks about TMQL, it may be
perfectly reasonable that a topic map is an information source for an inference engine
which takes that topic map as input, infers new facts from existing facts, and exports a
topic map view as output. Note that the topic map constructs of the output may be
generated on demand, i.e. only when a query is active. This way, the memory
requirements for such an inference engine can be much smaller than the memory
requirements if the exported topic map view was materialized.
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2.3    TMDM Basic implementation layer (read-write access)

This  layer  contains  classes  for  representing  TMDM  objects,  all  within  the
package org.tm4j.topicmap.tmdm.basic:

1. BasicTopicMap

2. BasicTopic

3. BasicTopicName

4. BasicVariant

5. BasicOccurrence

6. BasicAssociation

7. BasicAssociationRole

8. BasicScopeable (abstract class)
9. BasicScope

10. BasicReifiable (abstract class)
11. BasicTopicMapConstruct (abstract class)

Each of these classes implements the appropriate read-write TMDM interface.

In a Model-View-Controller design, this layer contains the model. That means
that all actions to modify a topic map are actions on objects in the Basic layer,
the objects in the Basic layer act as mere storage. Thus, questions about whether
two BasicTopicMapConstructs are to be merged, or not, are not answered here.
For example, even if two BasicTopic objects are to be merged, it is not possible
to query the merged set of the merged topic's BasicTopicNames (directly) if only
a reference to one of these BasicTopic objects is available. Effectively, the Basic
layer  represents  topic  maps  as  if  the  merging  rules  did  not  exist.  However,
actions  on  BasicTopicMapConstructs  induce  events,  which  are  typically
forwarded to the Merged layer.

2.4    TMDM Merged implementation layer (read-only access)

This  layer  contains  classes  for  representing  TMDM  objects,  all  within  the
package org.tm4j.topicmap.tmdm.merged:

1. MergedTopicMap

2. MergedTopic

3. MergedTopicName

4. MergedVariant (currently not implemented)
5. MergedOccurrence
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6. MergedAssociation

7. MergedAssociationRole

8. MergedScopeable (abstract class)
9. MergedScope

10. MergedReifiable (abstract class)
11. MergedTopicMapConstruct (abstract class)

Each of these classes implements the appropriate read-only TMDM interface.

In a Model-View-Controller design, this layer contains an internal view on (a set
of)  other  topic  maps,  each allowed to  ignore the merging rules.  Each time a
viewed topic map (e.g. a  BasicTopicMap) changes in some aspect, an event is
fired and the merged topic map is updated accordingly.8

During the update, the merged topic map itself may fire events to its downstream
event  listener.  For  example,  it  may  fire  an  event  stating  that  two  formerly
separate  MergedTopicMapConstructs  have  now been  merged.  An  application
may use these notifications to update its user interface accordingly.

The Merged layer is only a view. Consequently, it does not need to modify its
upstream  TopicMapConstructs.  Thus,  it  only needs to operate on a read-only
version of a topic map, and consequently it requires the objects it is operating on
only  to  implement  the  read-only  TMDM interfaces  layer,  not  necessarily  the
read-write TMDM interfaces layer. As the Merged layer is a view, it also only
implements the read-only TMDM interfaces layer itself.

Representation.  Each  MergedTopicMapConstruct is internally represented as a
list of the individual upstream ReadableTopicMapConstructs (this list is called
components),  together  with  the  reference  to  the  MergedTopicMapView (see
below) and the key (see below) of the MergedTopicMapConstruct.

Merging topics. Most of the supplementing indexing information for a particular
MergedTopicMap is stored in a MergedTopicMapView object, which is attached to
every MergedTopicMapConstruct of that MergedTopicMap. One of the indexes is
itemIdentifierOrSubjectIdentifierToMergedTopicMapConstruct,
containing a mapping  from Locators to MergedTopicMapConstructs. Each time
an upstream ReadableTopicMapConstruct receives an additional item identifier
and,  similarly,  each  time  an  upstream  ReadableTopic receives  an  additional
subject identifier, the corresponding MergedTopicMapConstruct is registered in
this index under the additional identifier. If, for this additional identifier, there
already exists an entry, then merging is triggered. Equality of subject locators is

8 For example, consider that a new upstream ReadableTopic is created. Then, an event
is fired to the downstream MergedTopicMap. Then, a new MergedTopic is created.
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handled in the same way. Currently,  merging of topics due to equality in the
“reified” property is not implemented.

Merging statements.  For each statement, there is a key object which represents
that statement's equivalence class as defined by the TMDM. If two key objects
are equal in each field, then these key objects themselves are equal. The choice
of the fields of the key classes is guided by the TMDM's equality rules.  For
example, the data structure for the key for a  MergedOccurrence is defined as
follows:

public class MergedOccurrenceKey extends MergedScopeableKey {
  protected MergedTopic parent;
  protected MergedTopic type;
  protected Locator     datatype;
  protected String      value;
}

Whenever a statement is created or modified, an appropriate key object is entered
in  an  appropriate  index  within  the  MergedTopicMapView object.  If  there  is
already an existing key object in the index which equals the new key object, then
the statements of both keys are equal, and merging is triggered.

Dependent merging. If a MergedTopic is merged, then all the objects which are
referencing this  topic  have to be updated.  Thus,  each  MergedTopic maintains
inverted  indices  about  themself,  that  is,  sets  of  MergedTopicMapConstructs
which, for some property, point to that MergedTopic; each set for one particular
property.  In  case of  merging,  these sets  are traversed and the values for  that
property for the dependent MergedTopicMapConstructs are updated accordingly.
(This also means that their keys are changed to reflect the new value for that
property, which in turn can lead to more merging.)

In  the  current  implementation,  these  sets  are  not  complete:  They  are  only
implemented  for  the  properties  Association.type,  AssociationRole.type,
AssociationRole.player, TopicName.parent, Occurrence.parent. Thus, such
sets are missing for example for TopicName.type,  Occurrence.type as well as
for scope. Note that it is reasonable to assume that most of these sets are empty
for most topics, as most topics are never used as an association type, association
role type, occurrence type or topic name type. Thus, it should be more memory
efficient to replace these sets, currently 4 (and later 7) per  MergedTopic, either
by appropriate indices in the  MergedTopicMapView object or by a unified full
inverted index (that is, exactly one set per  MergedTopic, where each entry is a
pair  of  a  particular  MergedTopicMapConstruct and  the  property  within  that
particular  MergedTopicMapConstruct which  points  to  that  MergedTopic).
Implementing and evaluating this is left for future work.



192 Xuân Baldauf and Robert Amor

Merging complexity. Merging two MergedTopics into one is quite similar to the
union-find class of algorithms (employed for example in some implementations
of  Kruskal's  algorithm):  in  both  cases,  two  connected  components  are  to  be
merged into one. The choice of what to merge with what may have a remarkable
effect  on  the  performance.  Consider  a  list  of  n MergedTopics,  each  initially
representing only 1  BasicTopic.  Consider  that,  for  some reason (e.g.  adding
subject indicators), all topics are being merged with each other, one after another,
such that each time, the last two topics are merged. What if, at each step, both
MergedTopic objects are deleted and a new MergedTopic representing the two is
created instead9? Then both lists of individual upstream BasicTopics of both old
MergedTopics  have to  be copied into a unified list  of  the new  MergedTopic,
yielding  O n2 copy operations. What if one  MergedTopic object is reused and
the other MergedTopic object is merged into it? If, at each step, the last topic is
merged into the second but last topic, then still the number of copy operations is
in O n2 . However, if at each step, the second but last topic is merged into the last
topic, the number of copy operations is in O n . Thus, choosing the order of what
to merge into what is important.

The weighted-union heuristic  [Galler1964][Hopcroft1971][Fischer1972] teaches
to always merge the smaller  MergedTopic (the smaller connected component)
into  the  larger  one.  Then,  the  number  of  copy  operations  is  in  O n⋅log n ,
regardless of the initial number of BasicTopics in each MergedTopic. The proof
is similarly straightforward: There are at most  n initial  BasicTopics, and each
BasicTopic undergoes  only  about  log2 n  copy  operations.  Let  c m  be  the
number of BasicTopics that a MergedTopic m contains. Suppose a BasicTopic b
,  directly before undergoing a copy operation,  belongs to a  MergedTopic m0,
which  is  going  to  be  merged  with  MergedTopic m1.  This  results  in  a  new
MergedTopic m2.  Then,  the  equation  c m2 ≥2⋅c m0  holds.  The reason  is  that
c m2 =c m0 c m1  and  c m1 ≥c m0 .  (If  this  was  not  the  case,  then  the
BasicTopics of  m0 would not be copied, but the  BasicTopics of  m1 would be
copied  instead,  which  contradicts  the  assumption.)  Thus,  after  each  copy-
operation of a BasicTopic, the size of the MergedTopic, which the BasicTopic
is member of, has at least doubled. After k such steps, the BasicTopic belongs to
a  MergedTopic which has at least  2k BasicTopics. Let  k 0=min {k∣2kn }. After
k 0 steps (possibly earlier), the BasicTopic belongs to a MergedTopic which has
at least  n BasicTopics. At this stage, no further merging is possible (because
there is only one MergedTopic left, which contains each of the n BasicTopics).
Thus, after about log2 n  copy operations (k 0ceil log2 n ) for each BasicTopic,

∎the merging process is finished. 
9 as suggested by the TMDM
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The merging complexity  considerations for  other  MergedTopicMapConstructs
are similar.

Note that the conceptually simpler implementation may not always be the faster
implementation.  When merging  MergedTopic m0 with  MergedTopic m1 into a
new MergedTopic m2, then, conceptually, m0 and m1 have to be removed from the
indices and m2 has to be inserted into the indices (see [ISO13250-2], section 6.2).
However, now that we know that merging  into an existing  MergedTopic m1 is
faster, we also know that the address of m2 equals to the address of m1 (although
the state at the address changes from m1 to m2). Thus, we do not need to remove
(the address of)  m1 from the indices, because all pointers to the state  m1 later
point to the state m2. We just have to remove everything pointing to the address
of m0 from the indices and insert new index entries such that they now point to
the address of  m2. If removing and inserting can be combined into one update
operation,  this is  even better.  The TMDM backend was initially implemented
without  that  optimization,  but  is  now available  with this  optimization  – with
tremendous speedups (see section 3). The reason for this speedup is the change
of the complexity class: Consider the merging of  n topic maps into a big topic
map, one at a time, and consider a subject which is represented in every such
topic map (e.g. by a topic which serves as a type topic for some common type of
association  or  occurrence).  Then,  the  corresponding  MergedTopic has  many
BasicTopics  as  components.  Each  time  a  component  is  added  to  the
MergedTopic, without the merging optimization, all components are considered
(e.g. to list all subject identifiers) when unindexing and reindexing. Thus, the
number of consideration operations is in  O n2 . With the merging optimization,
only  the  newest  BasicTopic is  considered  at  a  time,  thus  the  number  of
considerations is in O n .

Unmerging complexity.  The design of the Merged layer, as a view to process
whichever input it is confronted with, allows not only for merging, but also for
unmerging. Consider that a property of a  BasicReifiable is changed. In this
case, the corresponding MergedReifiableKey changes, the BasicReifiable may
be removed from the set of components of one MergedReifiable and it may be
added to the set of components of another MergedReifiable.

However, this simple response to change may be more complicated for topics.
Consider  a  bipartite  graph,  where  BasicTopics  and locators  are  vertices  and
where there is an edge between a locator and a  BasicTopic if, and only if, the
locator  is  a  subject  identifier  of  the  BasicTopic.  Then,  for  each  connected
component  in  the  graph,  all  the  BasicTopics  which  are  member  of  that
component should be merged. Now, consider that an application removes such an
edge  of  the  connected  component  (for  example  by  executing  something  like
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basicTopic.removeSubjectIdentifier(someSubjectIdentifier)).  Then,  the
MergedTopic of  that  connected  component  should  split  iff  the  connected
component  splits.  However,  there  is  no  straightforward  way  to  determine
(locally) whether a removal of just one edge makes a connected component split.
For example, if the connected component is a large cycle, removing one edge
does  not  make  the  connected  component  split.  However,  if  the  connected
component  is  nearly  a  large  cycle  with  just  one  remote  segment  missing,
removing one edge makes the connected component split.

Thus, until a more thorough analysis of this problem is performed, the current
implementation for splitting is to reduce splitting to merging by atomicizing the
connected component. That is, all edges are removed and then all edges, except
the one to be initially removed, are re-added, eventually resulting in either one
connected component, or two. As this is an O mn⋅log n  operation (where m is
the  number  of  edges  and  n is  the  number  of  vertices  of  the  connected
component),  this operation is quite expensive. It  remains a question of future
research  whether  this  operation  needs  more  optimization  (like  an  aggregated
“remove all locators at once” operation), as removing locators may not be a very
common operation.

2.5   TM4J1 compatibility layer

This layer contains interfaces for wrapping TMDM objects into TM4J1 objects,
all within the package org.tm4j.topicmap.tm4j1:

1. TopicMapImpl
2. TopicImpl
3. BaseNameImpl
4. VariantImpl (currently not implemented)
5. OccurrenceImpl
6. AssociationImpl
7. MemberImpl
8. ScopedObjectImpl (abstract class)
9. TopicMapObjectImpl (abstract class)

At  the core of  the wrapping layer,  there  is  a  BasicTopicMap together  with a
MergedTopicMap within each TopicMapImpl. All read accesses which should also
take into account merged topics (which is the default) are forwarded to objects of
the Merged layer, while all write accesses are forwarded to the objects to the
Basic layer.
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All  necessarily  translations between the different  models  (TMDM vs.  TM4J1
data model) are done on the fly, on a best effort  basis. In particular, multiple
players  per  role  (allowed  in  TM4J1)  are  not  supported,  nesting  of  variants
(allowed in TM4J1 due to a misunderstanding of XTM 1.0) will not be supported
(variants are not yet implemented), topic name types and occurrence data types
(allowed in the TMDM) are inaccessible via the TM4J1 layer.

Instances of the compatibility layer (e.g. instances of TopicImpl) are created on
demand.  This may result  in two different  TopicImpl objects representing the
same  BasicTopic. But because they also represent the same  MergedTopic and
topic maps explicitly are designed for merging, this did not have an apparent
negative effect so far.

2.6   TopicMapEventListener

The event handling model has been changed radically. In TM4J1, a JavaBeans
PropertyChangeListener or  a  JavaBeans  VetoableChangeListener was
registered  against  a  particular  property  of  interest  of  a  particular  object  of
interest.  The property of interest was indicated by supplying the name of the
property as a string.

This has multiple disadvantages. First, using strings, instead of compiler-checked
literals (e.g. Java enums), is error prone, as accidental misspellings do not result
in compile errors, but are silently accepted. Second, using strings leads to string
comparison at runtime, which is slow compared to mere pointer dereferencing
which would be employed by the runtime environment if  compiler-supported
language constructs would be used. Third, the list of event listeners (or even just
the  pointer  to  this  list)  in  every  single  TopicMapObject contributes  to  the
memory footprint of these  TopicMapObjects. Fourth, an event handling model
based on PropertyChangeListener requires the event source to provide an old
and a new value of the property to the listener. In case the property is an array
and  the  event  is  to  add  an  element  to  the  array,  this  means  that  an  array
representing the old list of elements and an array representing the new list of
elements have to be provided to the listener, at the same time. This does not only
mean that the listener has to do a side-by-side comparison of both supplied arrays
(which is at least an O n  operation) in order to find out which element has been
added. This also means that just preparing for sending an event is not an  O 1
operation anymore, but an O n  operation, involving creating a copy of an array.

For example, the relevant code to add an association role to an association in
TM4J1 looks like  (“association  role”  is  called  “member”  in  the  TM4J1 data
model):
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Collection oldMembers = (m_members == null)? Collections.EMPTY_LIST
                                           : m_members;

// Fire vetoable change notification
Collection newMembers = new ArrayList(oldMembers);

newMembers.add(member);
fireVetoableChange("members",
    Collections.unmodifiableCollection(oldMembers),
    Collections.unmodifiableCollection(newMembers));

m_members = newMembers;
((MemberImpl) member).setParent(this);

firePropertyChange("members", oldMembers, m_members);

whereas the relevant code to add an association role to an association in TM4J2
looks like:

roles.add(role);
getEventListener().notifyAssociationRoleCreated(
                       getContainingTopicMap(),this,role);

It is clear that the latter code is not only shorter, but reasonably expected to be
faster, too. 

Thus,  the  event  handling  model  of  TM4J2  has  been  redesigned  radically
compared to TM4J1.

First, the new event handling model does not use string constants. It also does
not use enum constants. Instead, it models every event as an action, that is, in the
Java language, a method call. Using method calls instead of event objects has the
advantages that there is no need to create, write to, read from, or delete event
objects.  Instead,  all  of  these  actions  happen implicitly  on the  stack.  Another
advantage is that there is no need to define different event classes for different
types of events, which would have led to an event class zoo. A further advantage
of  the  implicitness  of  method  calls  is  the  good  support  for  optimization  by
current Java virtual machines: If it can be determined (by the JavaVM) that the
only possible implementation of a method call is the empty implementation, then
the method call itself, along with all preparations to calculate the arguments of
the method, can be optimized away.

Second, there is only one, and exactly one event listener per topic map, and there
is no event listener for any of the other  TopicMapConstructs. First, this saves
main memory in all but one objects of each topic map. Second, by settling for
exactly one event listener (and not for zero or one, or, respectively, a variable
number of event listeners), an explicit check for null pointers, or, respectively, a
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for-loop, is avoided, making the code more readable and less complex and thus
more amenable to automatic optimization. Third, the default event listener is the
no-operation event listener. If the JavaVM detects the no-operation-nature of the
event listener (and chances are that current JavaVMs do so), then, as mentioned
above, event handling is a no-operation also on the caller side, and thus with zero
cost with respect to CPU cycles.

This does not mean that multiple event listeners are not supported. The concern
for multiple listeners has just been separated from the concern of calling “the
event  listeners”:  If  multiple  event  listeners  are  desired,  it  is  easy  to  create  a
multiplexer event listener which forwards each event it receives itself to multiple
event listeners.

2.7   Architectural overview

Putting everything together, Figure 1 shows a simplified example object graph
and  the  three  layer.  The  path  throughout  the  graph  shows  an  example  event
handling path.
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2.8   XTM 2.0 reading support

XTM 2.0 reading support has been implemented partially, currently as what is
called colloquially as a “hack”. That is, element names of XTM 2.0 are handled
in the same way as the corresponding element names of XTM 1.0 are handled.
Features  of  XTM 2.0  which  are  not  available  in  XTM 1.0  are  thus  silently
ignored, even if the final backend supports the TMDM, because up to now, there
are no “feature” holes punched into the curtain of the TM4J1 API, even if both
sides of the curtain support more modern topic maps processing. A proper XTM
2.0 reading and writing support, building directly on TMDM backends, is part of
the future work.

3   Evaluation

The contribution to the TM4J project has a size of more than 9000 lines of code,
and it is available in the current CVS tree of TM4J, open for public review. We
have  benchmarked  the  current  “TMDM”  backend  prototype  with  merging
optimization  and  the  current  “TMDM”  backend  prototype  without  merging
optimization against the old “memory” backend on a testing machine, containing
8 Intel Xeon E5335 cores and 16GiB of RAM, running Linux 2.6.25 in 64-bit
mode. We take a set of between 1 and 1024 small XTM 2.0 files (on average 111
topic  map  constructs  (among  them  about  24.6  topics  and  22.5  binary
associations)  per  file)  generated  by  yet-to-be-published  software  out  of  the
DBLP10 dataset, and let  all these backends merge these files into one merged
XTM. Some topics are present in all files, most topics are only present in one or
two files. Most associations are present in one or two files. Most topics have 2 or
3 subject indicators. We measure the processing time as well as the maximum
used memory (by using statistical output of the garbage collector). We use the
“Java HotSpot(TM) 64-Bit Server VM (build 10.0-b22, mixed mode)”,
the Java command line options “-Xmx8G -da” for processing time tests and the
additional  command  line  options  “-verbose:gc  -XX:MinHeapFreeRatio=2
-XX:MaxHeapFreeRatio=4 -XX:MaxNewSize=2048k ” for RAM tests (to enable
frequent garbage collector statistical output). All tests have been performed with
pre-warmed caches to minimize influences of e.g. disk latency.

10 DBLP is one of Computer Science's large bibliographic databases. One XTM 2.0 file
corresponds to the author-paper relationship shown for one particular author, for
example http://dblp.uni-trier.de/db/indices/a-tree/k/Knuth:Donald_E=.html.  (Thanks to
MICHAEL LEY for providing access to the software which generates all DBLP author's
pages.)
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Fig. 2. Synthetic benchmark of merging over different input sizes

While  the  unoptimized  “TMDM” backend  prototype  already  outperforms  the
“memory” backend,  it  is  evident  that  the  merging optimization  has  a  crucial
impact,  providing  an  about  20-fold  increase  in  merging  performance.  The
parabola shape of the processing time graph of the “TMDM” backend (without
merging  optimization)  is  well  in  line  with  the  theoretic  considerations  that,
without the merging optimizations, the merging complexity for  n topics to be
merged into one is in O n2 . The shape of the respective graph of the “memory”
backend  suggests  that  this  backend,  too,  could  profit  from  the  merge
optimization.

The  “TMDM”  backend  prototype  with  merging  optimization  consumes  less
memory than the “memory” backend. However, this may also partly be because
the “TMDM” backend prototype does not yet implement all desired features (e.g.
support for variants, and more indices).

Interestingly,  the memory footprints  of  both the “TMDM” backend prototype
variants  differ  considerably,  which  should  not  happen  for  a  memory-neutral

“memory” backend
“TMDM” backend (no merging optimization)
“TMDM” backend (with merging optimization)
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optimization.  This  could  be  an  indicator  of  a  memory  leak  in  the  “TMDM”
backend prototype, and needs further investigation.

In general, the memory usage for an implementation employing standard Java
techniques is still disappointing: about 3730 bytes per TopicMapConstruct. For a
comparison,  the  corresponding  XTM 2.0  input  files  consume just  about  163
bytes per TopicMapConstruct. A quick analysis using the “jmap” tool11 revealed
that not only a big part of the memory consumption is due to storing characters in
UTF-16 format (each character consuming 16 bits), but also that an even bigger
part of memory consumption is due to instances of  java.util.HashMap$Entry
and arrays thereof. Thus, not only changing the internal string encoding to more
space  efficient  encodings  (like  UTF-8)  or  employing  string  compression
techniques  (as  most  locators  happen  to  have  common  prefixes),  but  also
changing  the  implementation  of  java.util.Map from  java.util.HashMap to
more space-efficient ones as well as replacing small maps (e.g. those with only
one or 2 entries) by specialized, compact data structures, seem to be promising
improvements.

4   Future Work

BOCK raised in  [Bock2008] the issue of using a Domain Specific Language to
represent the TMDM, and of using interpreters of this language to generate each
of the sets of classes or interfaces of the TMDM backend of TM4J2. This is a
very interesting approach, as it not only helps to avoid coding errors, but also
helps to change deep architectural decisions on a whim. For example, we expect
that instead of implementing locators as Locator objects, but as UTF-8-encoded
byte[] strings,  the  resulting  topic  map  engine  would  both  have  a  smaller
memory footprint and be faster. (At the same time, the source code would lose
object  oriented  elegance,  which,  however,  is  acceptable  if  the source  code is
automatically  generated.)  By tuning  different  architectural  decisions,  one  can
create instance specific Topic Maps engines, i.e. Topic Maps engines which are
suited for a very specific type of topic map12,  to the point  where finding the
fastest Topic Maps engine for a particular topic map is a classical optimization
problem. To make this possible in the first place, as many parts of TM4J2 as
possible have to be reformulated in terms of a DSL. (BOCK has already completed
the formulation of the TMDM and the automatic  generation of  the read-only
TMDM interfaces,  the  read-write  TMDM interfaces,  the  Basic  layer  and  the
event listener interface.)

11 See http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html
12 For example, a topic map containing Chinese text data would suffer from UTF-8

encoding.
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Some  statistical  assumptions  about  “typical  topic  maps”  need  to  be  verified
empirically. Among them are the following:

1. The set of distinct scopes is much smaller than the set of scopeables.
2. The set of topics used as association type is small.
3. The set of topics used as association role type is small.
4. The set of topics used as topic name type is small.
5. The set of topics used as occurrence type is small.

MAICHER suggested  (in  private  conversation  at  the  TMRA2007)  that  late,  on
demand merging in federated Topic Map databases may be a good thing, because
it allows individual member Topic Maps to be virtual. This idea has merit, as
those  Topic  Maps  implementations  also  do  not  need  to  support  an  update
notification  (event  generation  mechanism).  It  also  avoids  the  unmerging
performance problem, because on demand merging does not require unmerging
at all. Furthermore, supporting late merging is actually a quite natural way for
supporting federated Topic Map databases in the first  place.  Thus,  a separate
org.tm4j.topicmap.tmdm.merged.ondemand view is part of future work.

Apart  from  dynamic  early  merging  and  dynamic  on-demand  (late)  merging,
support for static merging (that is, directly between BasicTopicMapConstructs)
may be implemented. However, if the dynamic early merging layer is efficient
enough,  there  may  not  be  much  incentive  to  implement  static  merging
functionality.

The backend shown here is for RAM-only storage.13 Exploring the extension of
the  backend  to  disk-based  storage  (e.g.  using  JDO)  has  been  started  by  the
authors, but is not part of this paper.
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