
Towards a second generation Topic Maps engine

Xuân Baldauf 1 and Robert Amor2

1 University of Auckland, New Zealand
xuan--tm4j2--2008--tmra.de@academia.baldauf.org

2 Department of Computer Science, University of Auckland, Private Bag 92019,
Auckland, New Zealand

trebor@cs.auckland.ac.nz

Abstract. The core of the second generation Topic Maps standards
(TMDM, XTM2.0) has been finalized, yet the uptake is still slow. In
this paper, we highlight engineering considerations for a novel backend
for the TM4J open source topic maps engine, which is currently in
development, but already usable for some purposes. As the name
suggests, the “TMDM” backend is designed to reflect the TMDM
specification closely. In fact, it is much closer to the TMDM than to the
internal legacy TM4J data model (which is based on the XTM 1.0 data
model). This motivates a bridging layer between the TMDM and the
XTM 1.0 data model. We emphasize how merging is implemented in
the “TMDM” backend and conclude with some synthetic merging
benchmarks of the current “TMDM” backend prototype.

Keywords: TM4J, TMDM, Topic Maps engine, Merging, Instant
Merging, Dynamic Merging

1 Introduction

A new generation of Topic Maps standards (the Topic Maps Data Model
[ISO13250-2], XTM 2.0 [ISO13250-3]) was finalized in 2006, yet adoption in
the community remains slow. TM4J1 is an open source Topic Maps engine
written in Java, mainly by KAL AHMED. The most recent release (TM4J 0.9.7,
published in 2004) is based on the older XTM 1.0 [XTM1.0] standard. While
development activity on TM4J slowed after 2004, TM4J is still the most
comprehensive open source Java Topic Maps Engine, and several projects build
on TM4J. Thus, TM4J clearly needs an update to support the new Topic Maps
standards. Updating TM4J is preferable to designing a completely new and

1 See http://tm4j.org/

Maicher, L.; Garshol, L. M. (eds.): Subject-centric computing. Fourth International Conference on Topic
Maps Research and Applications, TMRA 2008, Leipzig, Germany, October 16-17, 2008, Revised Selected
Papers. (Leipziger Beiträge zur Informatik: XII) - ISBN 978-3-941152-05-2

184 Xuân Baldauf and Robert Amor

independent Topic Maps engine, as, in the case of an ideal update, all TM4J
legacy application can build on an updated TM4J without need for modification
on their part. This in turn leverages the existing TM4J applications and allows
them a smooth migration path to the new Topic Maps standards.

In this paper, we show the design principles of a novel backend for TM4J, which
is anticipated to lead TM4J to version 2.0. We will use the term “TM4J1” for the
branch of TM4J which keeps the architecture of TM4J 0.9.7 and will, in
particular, not support the TMDM. We will use the term “TM4J2” for the branch
of TM4J which undergoes the major architectural changes we are describing
here.

1.1 Assessment

When starting to work with TM4J1, we were in need of a topic maps engine
which would be able to consume many small automatically generated XTM 2.0
files and merge them into a large XTM file. However, TM4J1 supported neither
the syntax of XTM 2.0 nor the semantics of XTM 2.0 (which is specified by the
TMDM). Internally, merging is only done on request, not instantly, as the
TMDM mandates in section 6.1: “Any change to a topic map [...] shall be
followed by [...] merging”. Each such merging request would apply to the whole
topic map, making “simulated instant merging” (by requesting such merging
after every small change) infeasible with respect to performance. Furthermore,
the TM4J1 API is outdated in multiple ways. First, the TM4J1 API is based on an
older version of the Java language (e.g. it lacks support for Java Generics).
Second, the TM4J1 API is slightly, but still significantly incompatible with the
TMAPI [TMAPI1.0SP1], giving rise to a need for a wrapping-layer around
TM4J1 objects to make them appear as TMAPI objects. The TMAPI itself (as of
version 1.0) has not yet been updated to the TMDM, thus the names of the
classes and methods in the TMAPI 1.0 do not exactly match the names of classes
and properties of the TMDM.

For these and other reasons, the following desired features have been identified:

1. Internal support for the TMDM,
2. Support for XTM 2.0,
3. Instant merging,
4. Dynamic merging (where the individual components can still be

identified),
5. Support for modern Java language features, such as Java Generics,

Towards a second generation Topic Maps engine 185

6. Let TMDM guide the naming of classes, methods and fields,2

7. Translation between the TM4J2 data model and the TM4J1 data model3.

2 The TMDM backend

The novel “TMDM” backend for TM4J is designed upon the well known
principle of separation of concerns. This principle guides

1. that storage of Topic Maps (in RAM) should be separated from a
merged view of Topic Maps,

2. that a TM4J1 data model view should be separated from a TM4J2 data
model view,

3. that interfaces should be separated from implementations,
4. that interfaces themselves should be separated by concerns,
5. that event handling should be separated.

This is why there is not only one set of classes (or interfaces), but five:
1. The interfaces for TMDM data with read-write access.
2. The interfaces for TMDM data with read-only access.
3. The classes to store TMDM data.
4. The classes to view TMDM data in merged form.
5. The classes to access TMDM data through the TM4J1 data model.

Additionally, a new handling system to efficiently communicate events between
the different layers of objects has been devised.

In the following sections, these layers and subsystems are described. Figure 1
(below) provides an overview over all these layers.

2.1 TMDM interfaces layer (read-write access)

This layer contains interfaces for representing TMDM objects, all within the
package org.tm4j.topicmap.tmdm:

2 If the TMDM guides the naming of classes, methods and fields for the “TMDM”
backend as well as for the upcoming TMAPI 2 standard, then the “TMDM” backend
may be automatically compatible with the upcoming TMAPI 2 standard, making a
separate wrapping layer (as in TM4J1) unnecessary.

3 When supporting the TMDM but, at the same time, serving as a backend for TM4J1
applications, there is a need for translating between the TM4J1 data model (which is the
data model of XTM 1.0) and the TM4J2 data model (which is the TMDM).

186 Xuân Baldauf and Robert Amor

1. TopicMap extends Reifiable

2. Topic extends TopicMapConstruct

3. TopicName extends Scopeable

4. Variant extends Scopeable

5. Occurrence extends Scopeable

6. Association extends Scopeable

7. AssociationRole extends Reifiable

8. Scopeable extends Reifiable

9. Scope

10. Reifiable extends TopicMapConstruct

11. TopicMapConstruct

Each of these interfaces contains methods to read and write properties of the
TMDM item type they represent. For example, the Topic interface contains,
among others, the following declarations:

public boolean addSubjectIdentifier(Locator subjectIdentifier);
public boolean removeSubjectIdentifier(Locator subjectIdentifier);
public Set<Locator> getSubjectIdentifiers();

As another example, the TopicName interface contains, among others, the
following declarations:

public void setType(Topic type);
public Topic getType();
public void setValue(String value);
public String getValue();

Scopeable and Scope. The interface hierarchy here differs from the TMDM
class hierarchy in that the interfaces Scopeable and Scope are introduced. While
in the TMDM specification, scope is defined verbally (“All statements have a
scope.”), a reflection of this definition is lacking in the original TMDM class
hierarchy: scope is left to remain an arbitrary set of topics in each statement
without a unique identity. This is changed in TM4J2. The rationale behind this is
the reasonable assumption that the set of distinct scopes in a typical topic map is
much smaller than the set of scopeables (that is, the set of statements). If this
assumption is true, then instead of storing a mutable set of topics for each
Scopeable (which typically consumes at least a Java array object header and
pointers to each of the topic objects), it is more memory-efficient to just store a
mutable pointer to an immutable Scope object. It is also assumed that, at query
time, this compression increases cache-locality, as the number of distinct scope
objects (Scope objects vs. sets of topics) to be traversed is much smaller.
Furthermore, in case two topics of the same scope merge, changing the affected

Towards a second generation Topic Maps engine 187

Scope object4 is much cheaper than changing, or even just keeping track of, all
affected Scopeable objects. However, as TM4J2 is not fully implemented yet,
and also because there is, to date, no well-agreed Topic Maps benchmark suite
(consisting of demo topic-maps in various serialization formats and demo queries
in the yet to be finalized Topic Maps Query Language), all these considerations
are merely theoretical and are still in need of performance evaluation.

2.2 TMDM interfaces layer (read-only access)

This layer contains interfaces for representing TMDM objects which are only to
be read, but not to be written, all within the package org.tm4j.topicmap.tmdm:

1. ReadableTopicMap

2. ReadableTopic

3. ReadableTopicName

4. ReadableVariant

5. ReadableOccurrence

6. ReadableAssociation

7. ReadableAssociationRole

8. ReadableScopeable

9. ReadableScope

10. ReadableReifiable

11. ReadableTopicMapConstruct

Each of these interfaces contains methods to just read properties of the TMDM
item type they represent. They are stripped-down versions of their read-write
counterparts. For example, the ReadableTopic interface contains, among others,
the following declarations:

public Set<Locator> getSubjectIdentifiers();

As another example, the ReadableTopicName interface contains, among others,
the following declarations:

public ReadableTopic getType();
public String getValue();

4 Giving up immutability of Scope objects leaves opportunity for two Scope objects
being equal. While avoiding this repetition is the very reason to have Scope objects in
the first place, actually having such repetition just in rare cases has only a tiny effect on
the ratio between actual memory savings and possible memory savings by this method.

188 Xuân Baldauf and Robert Amor

The rationale for having a layer of TMDM interfaces which just allow read-only
access, separate from TMDM interfaces which allow read-write access, is the
case of Virtual Topic Maps. A Virtual Topic Map5 is a view6 on something which
looks like a topic map, but may not actually be a (modifiable) topic map itself.
As one objective of topic maps is to be able to represent the structure of almost
any type of information, it is only consequential to reformulate about almost any
information source7 as a topic map. However, changing such a topic map is often
(unless it is materialized) not possible directly; however, changing the
information source, and having this change reflected in the topic map view, is
possible. If the translation between the information source and the topic map
view is a one-way-process (i.e. only from the source to the topic map view and
not the other way around) for theoretical or practical reasons, then there is no
sensible way of implementing the setter methods which modify topic maps. If,
on the caller side, only getter methods are needed (for example, if a GUI view or
another topic maps view is built on the topic maps view), then the more adequate
interface between these two sides is the set of TMDM interfaces which just allow
read-only access.

Each read-write TMDM interface extends the corresponding read-only TMDM
interface. Note that e.g. the return type of ReadableTopicName.getType() is not
Topic but ReadableTopic, while the return type of TopicName.getType() is
Topic. The reason is that the read-only TMDM interfaces have to be closed
within themselves, i.e. they should not point into the world of read-write TMDM
interfaces. Note also that narrowing the return type when overriding (from
ReadableTopic to Topic) is a feature of Java 1.5, thus unavailable at the times
the original TM4J1 architecture was designed.

5 It is unclear to whom to trace the term “Virtual Topic Maps”. However, the earliest
instance of explaining this term, which we could find, is following mailing-list post of
STEVE PEPPER:
http://www.infoloom.com/pipermail/topicmapmail/2001q3/003190.html

6 A view is something which depends on, and its contents are defined by, what is viewed.
7 “Any information source” does not preclude topic maps themselves as information

sources. For example, as ROBERT BARTA points out in his talks about TMQL, it may be
perfectly reasonable that a topic map is an information source for an inference engine
which takes that topic map as input, infers new facts from existing facts, and exports a
topic map view as output. Note that the topic map constructs of the output may be
generated on demand, i.e. only when a query is active. This way, the memory
requirements for such an inference engine can be much smaller than the memory
requirements if the exported topic map view was materialized.

Towards a second generation Topic Maps engine 189

2.3 TMDM Basic implementation layer (read-write access)

This layer contains classes for representing TMDM objects, all within the
package org.tm4j.topicmap.tmdm.basic:

1. BasicTopicMap

2. BasicTopic

3. BasicTopicName

4. BasicVariant

5. BasicOccurrence

6. BasicAssociation

7. BasicAssociationRole

8. BasicScopeable (abstract class)
9. BasicScope

10. BasicReifiable (abstract class)
11. BasicTopicMapConstruct (abstract class)

Each of these classes implements the appropriate read-write TMDM interface.

In a Model-View-Controller design, this layer contains the model. That means
that all actions to modify a topic map are actions on objects in the Basic layer,
the objects in the Basic layer act as mere storage. Thus, questions about whether
two BasicTopicMapConstructs are to be merged, or not, are not answered here.
For example, even if two BasicTopic objects are to be merged, it is not possible
to query the merged set of the merged topic's BasicTopicNames (directly) if only
a reference to one of these BasicTopic objects is available. Effectively, the Basic
layer represents topic maps as if the merging rules did not exist. However,
actions on BasicTopicMapConstructs induce events, which are typically
forwarded to the Merged layer.

2.4 TMDM Merged implementation layer (read-only access)

This layer contains classes for representing TMDM objects, all within the
package org.tm4j.topicmap.tmdm.merged:

1. MergedTopicMap

2. MergedTopic

3. MergedTopicName

4. MergedVariant (currently not implemented)
5. MergedOccurrence

190 Xuân Baldauf and Robert Amor

6. MergedAssociation

7. MergedAssociationRole

8. MergedScopeable (abstract class)
9. MergedScope

10. MergedReifiable (abstract class)
11. MergedTopicMapConstruct (abstract class)

Each of these classes implements the appropriate read-only TMDM interface.

In a Model-View-Controller design, this layer contains an internal view on (a set
of) other topic maps, each allowed to ignore the merging rules. Each time a
viewed topic map (e.g. a BasicTopicMap) changes in some aspect, an event is
fired and the merged topic map is updated accordingly.8

During the update, the merged topic map itself may fire events to its downstream
event listener. For example, it may fire an event stating that two formerly
separate MergedTopicMapConstructs have now been merged. An application
may use these notifications to update its user interface accordingly.

The Merged layer is only a view. Consequently, it does not need to modify its
upstream TopicMapConstructs. Thus, it only needs to operate on a read-only
version of a topic map, and consequently it requires the objects it is operating on
only to implement the read-only TMDM interfaces layer, not necessarily the
read-write TMDM interfaces layer. As the Merged layer is a view, it also only
implements the read-only TMDM interfaces layer itself.

Representation. Each MergedTopicMapConstruct is internally represented as a
list of the individual upstream ReadableTopicMapConstructs (this list is called
components), together with the reference to the MergedTopicMapView (see
below) and the key (see below) of the MergedTopicMapConstruct.

Merging topics. Most of the supplementing indexing information for a particular
MergedTopicMap is stored in a MergedTopicMapView object, which is attached to
every MergedTopicMapConstruct of that MergedTopicMap. One of the indexes is
itemIdentifierOrSubjectIdentifierToMergedTopicMapConstruct,
containing a mapping from Locators to MergedTopicMapConstructs. Each time
an upstream ReadableTopicMapConstruct receives an additional item identifier
and, similarly, each time an upstream ReadableTopic receives an additional
subject identifier, the corresponding MergedTopicMapConstruct is registered in
this index under the additional identifier. If, for this additional identifier, there
already exists an entry, then merging is triggered. Equality of subject locators is

8 For example, consider that a new upstream ReadableTopic is created. Then, an event
is fired to the downstream MergedTopicMap. Then, a new MergedTopic is created.

Towards a second generation Topic Maps engine 191

handled in the same way. Currently, merging of topics due to equality in the
“reified” property is not implemented.

Merging statements. For each statement, there is a key object which represents
that statement's equivalence class as defined by the TMDM. If two key objects
are equal in each field, then these key objects themselves are equal. The choice
of the fields of the key classes is guided by the TMDM's equality rules. For
example, the data structure for the key for a MergedOccurrence is defined as
follows:

public class MergedOccurrenceKey extends MergedScopeableKey {
 protected MergedTopic parent;
 protected MergedTopic type;
 protected Locator datatype;
 protected String value;
}

Whenever a statement is created or modified, an appropriate key object is entered
in an appropriate index within the MergedTopicMapView object. If there is
already an existing key object in the index which equals the new key object, then
the statements of both keys are equal, and merging is triggered.

Dependent merging. If a MergedTopic is merged, then all the objects which are
referencing this topic have to be updated. Thus, each MergedTopic maintains
inverted indices about themself, that is, sets of MergedTopicMapConstructs
which, for some property, point to that MergedTopic; each set for one particular
property. In case of merging, these sets are traversed and the values for that
property for the dependent MergedTopicMapConstructs are updated accordingly.
(This also means that their keys are changed to reflect the new value for that
property, which in turn can lead to more merging.)

In the current implementation, these sets are not complete: They are only
implemented for the properties Association.type, AssociationRole.type,
AssociationRole.player, TopicName.parent, Occurrence.parent. Thus, such
sets are missing for example for TopicName.type, Occurrence.type as well as
for scope. Note that it is reasonable to assume that most of these sets are empty
for most topics, as most topics are never used as an association type, association
role type, occurrence type or topic name type. Thus, it should be more memory
efficient to replace these sets, currently 4 (and later 7) per MergedTopic, either
by appropriate indices in the MergedTopicMapView object or by a unified full
inverted index (that is, exactly one set per MergedTopic, where each entry is a
pair of a particular MergedTopicMapConstruct and the property within that
particular MergedTopicMapConstruct which points to that MergedTopic).
Implementing and evaluating this is left for future work.

192 Xuân Baldauf and Robert Amor

Merging complexity. Merging two MergedTopics into one is quite similar to the
union-find class of algorithms (employed for example in some implementations
of Kruskal's algorithm): in both cases, two connected components are to be
merged into one. The choice of what to merge with what may have a remarkable
effect on the performance. Consider a list of n MergedTopics, each initially
representing only 1 BasicTopic. Consider that, for some reason (e.g. adding
subject indicators), all topics are being merged with each other, one after another,
such that each time, the last two topics are merged. What if, at each step, both
MergedTopic objects are deleted and a new MergedTopic representing the two is
created instead9? Then both lists of individual upstream BasicTopics of both old
MergedTopics have to be copied into a unified list of the new MergedTopic,
yielding O n2 copy operations. What if one MergedTopic object is reused and
the other MergedTopic object is merged into it? If, at each step, the last topic is
merged into the second but last topic, then still the number of copy operations is
in O n2 . However, if at each step, the second but last topic is merged into the last
topic, the number of copy operations is in O n . Thus, choosing the order of what
to merge into what is important.

The weighted-union heuristic [Galler1964][Hopcroft1971][Fischer1972] teaches
to always merge the smaller MergedTopic (the smaller connected component)
into the larger one. Then, the number of copy operations is in O n⋅log n ,
regardless of the initial number of BasicTopics in each MergedTopic. The proof
is similarly straightforward: There are at most n initial BasicTopics, and each
BasicTopic undergoes only about log2 n  copy operations. Let c m  be the
number of BasicTopics that a MergedTopic m contains. Suppose a BasicTopic b
, directly before undergoing a copy operation, belongs to a MergedTopic m0,
which is going to be merged with MergedTopic m1. This results in a new
MergedTopic m2. Then, the equation c m2 ≥2⋅c m0  holds. The reason is that
c m2 =c m0 c m1  and c m1 ≥c m0 . (If this was not the case, then the
BasicTopics of m0 would not be copied, but the BasicTopics of m1 would be
copied instead, which contradicts the assumption.) Thus, after each copy-
operation of a BasicTopic, the size of the MergedTopic, which the BasicTopic
is member of, has at least doubled. After k such steps, the BasicTopic belongs to
a MergedTopic which has at least 2k BasicTopics. Let k 0=min {k∣2kn }. After
k 0 steps (possibly earlier), the BasicTopic belongs to a MergedTopic which has
at least n BasicTopics. At this stage, no further merging is possible (because
there is only one MergedTopic left, which contains each of the n BasicTopics).
Thus, after about log2 n  copy operations (k 0ceil log2 n ) for each BasicTopic,

∎the merging process is finished.
9 as suggested by the TMDM

Towards a second generation Topic Maps engine 193

The merging complexity considerations for other MergedTopicMapConstructs
are similar.

Note that the conceptually simpler implementation may not always be the faster
implementation. When merging MergedTopic m0 with MergedTopic m1 into a
new MergedTopic m2, then, conceptually, m0 and m1 have to be removed from the
indices and m2 has to be inserted into the indices (see [ISO13250-2], section 6.2).
However, now that we know that merging into an existing MergedTopic m1 is
faster, we also know that the address of m2 equals to the address of m1 (although
the state at the address changes from m1 to m2). Thus, we do not need to remove
(the address of) m1 from the indices, because all pointers to the state m1 later
point to the state m2. We just have to remove everything pointing to the address
of m0 from the indices and insert new index entries such that they now point to
the address of m2. If removing and inserting can be combined into one update
operation, this is even better. The TMDM backend was initially implemented
without that optimization, but is now available with this optimization – with
tremendous speedups (see section 3). The reason for this speedup is the change
of the complexity class: Consider the merging of n topic maps into a big topic
map, one at a time, and consider a subject which is represented in every such
topic map (e.g. by a topic which serves as a type topic for some common type of
association or occurrence). Then, the corresponding MergedTopic has many
BasicTopics as components. Each time a component is added to the
MergedTopic, without the merging optimization, all components are considered
(e.g. to list all subject identifiers) when unindexing and reindexing. Thus, the
number of consideration operations is in O n2 . With the merging optimization,
only the newest BasicTopic is considered at a time, thus the number of
considerations is in O n .

Unmerging complexity. The design of the Merged layer, as a view to process
whichever input it is confronted with, allows not only for merging, but also for
unmerging. Consider that a property of a BasicReifiable is changed. In this
case, the corresponding MergedReifiableKey changes, the BasicReifiable may
be removed from the set of components of one MergedReifiable and it may be
added to the set of components of another MergedReifiable.

However, this simple response to change may be more complicated for topics.
Consider a bipartite graph, where BasicTopics and locators are vertices and
where there is an edge between a locator and a BasicTopic if, and only if, the
locator is a subject identifier of the BasicTopic. Then, for each connected
component in the graph, all the BasicTopics which are member of that
component should be merged. Now, consider that an application removes such an
edge of the connected component (for example by executing something like

194 Xuân Baldauf and Robert Amor

basicTopic.removeSubjectIdentifier(someSubjectIdentifier)). Then, the
MergedTopic of that connected component should split iff the connected
component splits. However, there is no straightforward way to determine
(locally) whether a removal of just one edge makes a connected component split.
For example, if the connected component is a large cycle, removing one edge
does not make the connected component split. However, if the connected
component is nearly a large cycle with just one remote segment missing,
removing one edge makes the connected component split.

Thus, until a more thorough analysis of this problem is performed, the current
implementation for splitting is to reduce splitting to merging by atomicizing the
connected component. That is, all edges are removed and then all edges, except
the one to be initially removed, are re-added, eventually resulting in either one
connected component, or two. As this is an O mn⋅log n  operation (where m is
the number of edges and n is the number of vertices of the connected
component), this operation is quite expensive. It remains a question of future
research whether this operation needs more optimization (like an aggregated
“remove all locators at once” operation), as removing locators may not be a very
common operation.

2.5 TM4J1 compatibility layer

This layer contains interfaces for wrapping TMDM objects into TM4J1 objects,
all within the package org.tm4j.topicmap.tm4j1:

1. TopicMapImpl
2. TopicImpl
3. BaseNameImpl
4. VariantImpl (currently not implemented)
5. OccurrenceImpl
6. AssociationImpl
7. MemberImpl
8. ScopedObjectImpl (abstract class)
9. TopicMapObjectImpl (abstract class)

At the core of the wrapping layer, there is a BasicTopicMap together with a
MergedTopicMap within each TopicMapImpl. All read accesses which should also
take into account merged topics (which is the default) are forwarded to objects of
the Merged layer, while all write accesses are forwarded to the objects to the
Basic layer.

Towards a second generation Topic Maps engine 195

All necessarily translations between the different models (TMDM vs. TM4J1
data model) are done on the fly, on a best effort basis. In particular, multiple
players per role (allowed in TM4J1) are not supported, nesting of variants
(allowed in TM4J1 due to a misunderstanding of XTM 1.0) will not be supported
(variants are not yet implemented), topic name types and occurrence data types
(allowed in the TMDM) are inaccessible via the TM4J1 layer.

Instances of the compatibility layer (e.g. instances of TopicImpl) are created on
demand. This may result in two different TopicImpl objects representing the
same BasicTopic. But because they also represent the same MergedTopic and
topic maps explicitly are designed for merging, this did not have an apparent
negative effect so far.

2.6 TopicMapEventListener

The event handling model has been changed radically. In TM4J1, a JavaBeans
PropertyChangeListener or a JavaBeans VetoableChangeListener was
registered against a particular property of interest of a particular object of
interest. The property of interest was indicated by supplying the name of the
property as a string.

This has multiple disadvantages. First, using strings, instead of compiler-checked
literals (e.g. Java enums), is error prone, as accidental misspellings do not result
in compile errors, but are silently accepted. Second, using strings leads to string
comparison at runtime, which is slow compared to mere pointer dereferencing
which would be employed by the runtime environment if compiler-supported
language constructs would be used. Third, the list of event listeners (or even just
the pointer to this list) in every single TopicMapObject contributes to the
memory footprint of these TopicMapObjects. Fourth, an event handling model
based on PropertyChangeListener requires the event source to provide an old
and a new value of the property to the listener. In case the property is an array
and the event is to add an element to the array, this means that an array
representing the old list of elements and an array representing the new list of
elements have to be provided to the listener, at the same time. This does not only
mean that the listener has to do a side-by-side comparison of both supplied arrays
(which is at least an O n  operation) in order to find out which element has been
added. This also means that just preparing for sending an event is not an O 1
operation anymore, but an O n  operation, involving creating a copy of an array.

For example, the relevant code to add an association role to an association in
TM4J1 looks like (“association role” is called “member” in the TM4J1 data
model):

196 Xuân Baldauf and Robert Amor

Collection oldMembers = (m_members == null)? Collections.EMPTY_LIST
 : m_members;

// Fire vetoable change notification
Collection newMembers = new ArrayList(oldMembers);

newMembers.add(member);
fireVetoableChange("members",
 Collections.unmodifiableCollection(oldMembers),
 Collections.unmodifiableCollection(newMembers));

m_members = newMembers;
((MemberImpl) member).setParent(this);

firePropertyChange("members", oldMembers, m_members);

whereas the relevant code to add an association role to an association in TM4J2
looks like:

roles.add(role);
getEventListener().notifyAssociationRoleCreated(
 getContainingTopicMap(),this,role);

It is clear that the latter code is not only shorter, but reasonably expected to be
faster, too.

Thus, the event handling model of TM4J2 has been redesigned radically
compared to TM4J1.

First, the new event handling model does not use string constants. It also does
not use enum constants. Instead, it models every event as an action, that is, in the
Java language, a method call. Using method calls instead of event objects has the
advantages that there is no need to create, write to, read from, or delete event
objects. Instead, all of these actions happen implicitly on the stack. Another
advantage is that there is no need to define different event classes for different
types of events, which would have led to an event class zoo. A further advantage
of the implicitness of method calls is the good support for optimization by
current Java virtual machines: If it can be determined (by the JavaVM) that the
only possible implementation of a method call is the empty implementation, then
the method call itself, along with all preparations to calculate the arguments of
the method, can be optimized away.

Second, there is only one, and exactly one event listener per topic map, and there
is no event listener for any of the other TopicMapConstructs. First, this saves
main memory in all but one objects of each topic map. Second, by settling for
exactly one event listener (and not for zero or one, or, respectively, a variable
number of event listeners), an explicit check for null pointers, or, respectively, a

Towards a second generation Topic Maps engine 197

for-loop, is avoided, making the code more readable and less complex and thus
more amenable to automatic optimization. Third, the default event listener is the
no-operation event listener. If the JavaVM detects the no-operation-nature of the
event listener (and chances are that current JavaVMs do so), then, as mentioned
above, event handling is a no-operation also on the caller side, and thus with zero
cost with respect to CPU cycles.

This does not mean that multiple event listeners are not supported. The concern
for multiple listeners has just been separated from the concern of calling “the
event listeners”: If multiple event listeners are desired, it is easy to create a
multiplexer event listener which forwards each event it receives itself to multiple
event listeners.

2.7 Architectural overview

Putting everything together, Figure 1 shows a simplified example object graph
and the three layer. The path throughout the graph shows an example event
handling path.

198 Xuân Baldauf and Robert Amor

2.8 XTM 2.0 reading support

XTM 2.0 reading support has been implemented partially, currently as what is
called colloquially as a “hack”. That is, element names of XTM 2.0 are handled
in the same way as the corresponding element names of XTM 1.0 are handled.
Features of XTM 2.0 which are not available in XTM 1.0 are thus silently
ignored, even if the final backend supports the TMDM, because up to now, there
are no “feature” holes punched into the curtain of the TM4J1 API, even if both
sides of the curtain support more modern topic maps processing. A proper XTM
2.0 reading and writing support, building directly on TMDM backends, is part of
the future work.

3 Evaluation

The contribution to the TM4J project has a size of more than 9000 lines of code,
and it is available in the current CVS tree of TM4J, open for public review. We
have benchmarked the current “TMDM” backend prototype with merging
optimization and the current “TMDM” backend prototype without merging
optimization against the old “memory” backend on a testing machine, containing
8 Intel Xeon E5335 cores and 16GiB of RAM, running Linux 2.6.25 in 64-bit
mode. We take a set of between 1 and 1024 small XTM 2.0 files (on average 111
topic map constructs (among them about 24.6 topics and 22.5 binary
associations) per file) generated by yet-to-be-published software out of the
DBLP10 dataset, and let all these backends merge these files into one merged
XTM. Some topics are present in all files, most topics are only present in one or
two files. Most associations are present in one or two files. Most topics have 2 or
3 subject indicators. We measure the processing time as well as the maximum
used memory (by using statistical output of the garbage collector). We use the
“Java HotSpot(TM) 64-Bit Server VM (build 10.0-b22, mixed mode)”,
the Java command line options “-Xmx8G -da” for processing time tests and the
additional command line options “-verbose:gc -XX:MinHeapFreeRatio=2
-XX:MaxHeapFreeRatio=4 -XX:MaxNewSize=2048k ” for RAM tests (to enable
frequent garbage collector statistical output). All tests have been performed with
pre-warmed caches to minimize influences of e.g. disk latency.

10 DBLP is one of Computer Science's large bibliographic databases. One XTM 2.0 file
corresponds to the author-paper relationship shown for one particular author, for
example http://dblp.uni-trier.de/db/indices/a-tree/k/Knuth:Donald_E=.html. (Thanks to
MICHAEL LEY for providing access to the software which generates all DBLP author's
pages.)

Towards a second generation Topic Maps engine 199

0 40000 80000 120000
0

100

200

300

400

500

600

700

800

900

21,51

458,97

825,49

processing time

TopicMapConstructs

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

0 40000 80000 120000
0

100

200

300

400

500

600

700

800

900

1000

407

878

548

RAM consumption

TopicMapConstructs

R
AM

 c
on

su
m

pt
io

n
in

 M
iB

Fig. 2. Synthetic benchmark of merging over different input sizes

While the unoptimized “TMDM” backend prototype already outperforms the
“memory” backend, it is evident that the merging optimization has a crucial
impact, providing an about 20-fold increase in merging performance. The
parabola shape of the processing time graph of the “TMDM” backend (without
merging optimization) is well in line with the theoretic considerations that,
without the merging optimizations, the merging complexity for n topics to be
merged into one is in O n2 . The shape of the respective graph of the “memory”
backend suggests that this backend, too, could profit from the merge
optimization.

The “TMDM” backend prototype with merging optimization consumes less
memory than the “memory” backend. However, this may also partly be because
the “TMDM” backend prototype does not yet implement all desired features (e.g.
support for variants, and more indices).

Interestingly, the memory footprints of both the “TMDM” backend prototype
variants differ considerably, which should not happen for a memory-neutral

“memory” backend
“TMDM” backend (no merging optimization)
“TMDM” backend (with merging optimization)

200 Xuân Baldauf and Robert Amor

optimization. This could be an indicator of a memory leak in the “TMDM”
backend prototype, and needs further investigation.

In general, the memory usage for an implementation employing standard Java
techniques is still disappointing: about 3730 bytes per TopicMapConstruct. For a
comparison, the corresponding XTM 2.0 input files consume just about 163
bytes per TopicMapConstruct. A quick analysis using the “jmap” tool11 revealed
that not only a big part of the memory consumption is due to storing characters in
UTF-16 format (each character consuming 16 bits), but also that an even bigger
part of memory consumption is due to instances of java.util.HashMap$Entry
and arrays thereof. Thus, not only changing the internal string encoding to more
space efficient encodings (like UTF-8) or employing string compression
techniques (as most locators happen to have common prefixes), but also
changing the implementation of java.util.Map from java.util.HashMap to
more space-efficient ones as well as replacing small maps (e.g. those with only
one or 2 entries) by specialized, compact data structures, seem to be promising
improvements.

4 Future Work

BOCK raised in [Bock2008] the issue of using a Domain Specific Language to
represent the TMDM, and of using interpreters of this language to generate each
of the sets of classes or interfaces of the TMDM backend of TM4J2. This is a
very interesting approach, as it not only helps to avoid coding errors, but also
helps to change deep architectural decisions on a whim. For example, we expect
that instead of implementing locators as Locator objects, but as UTF-8-encoded
byte[] strings, the resulting topic map engine would both have a smaller
memory footprint and be faster. (At the same time, the source code would lose
object oriented elegance, which, however, is acceptable if the source code is
automatically generated.) By tuning different architectural decisions, one can
create instance specific Topic Maps engines, i.e. Topic Maps engines which are
suited for a very specific type of topic map12, to the point where finding the
fastest Topic Maps engine for a particular topic map is a classical optimization
problem. To make this possible in the first place, as many parts of TM4J2 as
possible have to be reformulated in terms of a DSL. (BOCK has already completed
the formulation of the TMDM and the automatic generation of the read-only
TMDM interfaces, the read-write TMDM interfaces, the Basic layer and the
event listener interface.)

11 See http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html
12 For example, a topic map containing Chinese text data would suffer from UTF-8

encoding.

Towards a second generation Topic Maps engine 201

Some statistical assumptions about “typical topic maps” need to be verified
empirically. Among them are the following:

1. The set of distinct scopes is much smaller than the set of scopeables.
2. The set of topics used as association type is small.
3. The set of topics used as association role type is small.
4. The set of topics used as topic name type is small.
5. The set of topics used as occurrence type is small.

MAICHER suggested (in private conversation at the TMRA2007) that late, on
demand merging in federated Topic Map databases may be a good thing, because
it allows individual member Topic Maps to be virtual. This idea has merit, as
those Topic Maps implementations also do not need to support an update
notification (event generation mechanism). It also avoids the unmerging
performance problem, because on demand merging does not require unmerging
at all. Furthermore, supporting late merging is actually a quite natural way for
supporting federated Topic Map databases in the first place. Thus, a separate
org.tm4j.topicmap.tmdm.merged.ondemand view is part of future work.

Apart from dynamic early merging and dynamic on-demand (late) merging,
support for static merging (that is, directly between BasicTopicMapConstructs)
may be implemented. However, if the dynamic early merging layer is efficient
enough, there may not be much incentive to implement static merging
functionality.

The backend shown here is for RAM-only storage.13 Exploring the extension of
the backend to disk-based storage (e.g. using JDO) has been started by the
authors, but is not part of this paper.

Acknowledgements

Thanks go to the Topic Maps Lab14 at the University of Leipzig, Germany, for
kindly providing access to the testing machine.

13 Due to the gap between RAM latency and disk latency widening (and RAM having a
lower price per (random) access than disk) and due to the price of RAM declining, we
believe that distributed RAM-only Topic Maps engines will play an important role in
the future.

14 See http://www.topicmapslab.de/

202 Xuân Baldauf and Robert Amor

References

[ISO13250-2]: International Organization for Standardization/International Electrotechnical
Commission — Joint Technical Committee 1 — Subcommittee 34 — Working Group 3:
“ISO/IEC IS 13250-2:2006: Information Technology — Document Description and
Processing Languages — Topic Maps — Data Model” International Organization
for Standardization, Geneva, Switzerland (August 2006)
http://www.isotopicmaps.org/sam/sam-model/

[ISO13250-3]: International Organization for Standardization/International Electrotechnical
Commission — Joint Technical Committee 1 — Subcommittee 34 — Working Group 3:
“ISO/IEC IS 13250-3:2007: Information Technology — Document Description and
Processing Languages — Topic Maps — XML Syntax” International Organization
for Standardization, Geneva, Switzerland (August 2006)
http://www.isotopicmaps.org/sam/sam-model/

[XTM1.0]: TopicMaps.Org Authoring Group: “XML Topic Maps (XTM) 1.0”
International Organization for Standardization, Geneva, Switzerland (August 2001)
http://www.topicmaps.org/xtm/1.0/

[TMAPI1.0SP1]: Kal Ahmed, Lars Marius Garshol, Geir Ove Grønmo, Stefan Lischke, Lars
Heuer, Graham Moore: “TMAPI — Common Topic Map Application Programming
Interface — 1.0 SP1” (February 2005)
http://www.tmapi.org/

[Galler1964]: Bernard A. Galler, Michael J. Fisher: “An improvide equivalence algorithm”
in Communications of the ACM, volume 7, issue #5, pages 301..304 (May 1964)
http://portal.acm.org/citation.cfm?doid=364099.364331

[Hopcroft1971]: John E. Hopcroft, Jeffrey D. Ullman: “A linear list merging algorithm”,
Technical Report number CS-CSD-71-111, Cornell University, Ithaca, New York, USA
(November 1971)
http://ecommons.library.cornell.edu/bitstream/1813/10810/2/TR71-
111.pdf

[Fischer1972]: Michael J. Fischer: “Efficiency of equivalence Algorithms”, Artificial
Intelligence Memo number 256, A. I. Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA (April 1972)
http://dspace.mit.edu/bitstream/1721.1/6201/2/AIM-256.pdf

[Bock2008]: Benjamin Bock: “Topic Maps Middleware”. Master's thesis, University of
Leipzig, Germany (May 2008)
http://academia.bock.be/publications/Bock2008_Topic-Maps-
Middleware.pdf

